来流含不凝性气体的诱导轮空化流动实验研究
收稿日期: 2023-06-01
修回日期: 2023-07-24
录用日期: 2023-08-23
网络出版日期: 2023-09-13
基金资助
国家重大基础研究项目(613321)
Experimental study on cavitating flow characteristics of inducer with inflow entrained non⁃condensable gas
Received date: 2023-06-01
Revised date: 2023-07-24
Accepted date: 2023-08-23
Online published: 2023-09-13
Supported by
National Basic Research Program of China(613321)
林荣浩 , 陈晖 , 项乐 , 屈念冲 . 来流含不凝性气体的诱导轮空化流动实验研究[J]. 航空学报, 2024 , 45(11) : 529095 -529095 . DOI: 10.7527/S1000-6893.2023.29095
To study the effect of inflow entrained non-condensable gas on cavitating flow inside the inducer, a series of experiments are performed based on the visualization experimental platform. The macroscopic performance, cavitation development and cavitation instabilities of the inducer pump with different inlet gas volume fractions are investigated. It is found that the head breakdown occurred earlier at larger inlet gas volume fractions. Additionally, the non-condensable gas is entrained in leakage flow vortices and backflow vortices,resulting in significant extensions of leakage flow vortex cavities and backflow vortex cavities, under larger inlet non-condensable gas entrained condition. With small cavitation numbers (Φ=0.083, σ=0.090, and Φ=0.071, σ=0.068), the non-condensable gas provides extra cavitation compliance to the cavity and therefore suppresses the cavitation surge.
Key words: inducer; cavitation; visualization; non-condensable gas; cavitation instability
1 | 陈晖, 张恩昭, 谭永华, 等. 高速平板诱导轮的结构设计与分析[J]. 火箭推进, 2009, 35(3): 1-5. |
CHEN H, ZHANG E Z, TAN Y H, et al. Geometry design and analysis of the high-speed rotational plate inducer[J]. Journal of Rocket Propulsion, 2009, 35(3): 1-5 (in Chinese). | |
2 | 杨宝锋, 李斌, 陈晖, 等. 液体火箭发动机推进剂泵诱导轮与离心轮的匹配[J]. 航空学报, 2019, 40(5): 122609. |
YANG B F, LI B, CHEN H, et al. Matching effect between inducer and impeller in a liquid rocket engine propellant pump[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122609 (in Chinese). | |
3 | NAGAI H, NODA K, YAMAZAKI I, et al. Status of H-II rocket first stage propulsion system[J]. Journal of Propulsion and Power, 1992, 8(2): 313-319. |
4 | DUSSOLLIER G, TEISSIER A. Ariane 5 main stage oxygen tank pressurization: AIAA-1993-1969[R]. Reston: AIAA, 1993. |
5 | TSUJIMOTO Y, YOSHIDA Y, MAEKAWA Y, et al. Observations of oscillating cavitation of an inducer[J]. Journal of Fluids Engineering, 1997, 119(4): 775-781. |
6 | ZOLADZ T. Observations on rotating cavitation and cavitation surge from the development of the Fastrac engine turbopump: AIAA-2000-3403[R]. Reston: AIAA, 2000. |
7 | LETTIERI C, SPAKOVSZKY Z, JACKSON D, et al. Characterization of cavitation instabilities in a four-bladed turbopump inducer[J]. Journal of Propulsion and Power, 2018, 34(2): 510-520. |
8 | XIANG L, TAN Y H, CHEN H, et al. Experimental investigation of cavitation instabilities in inducer with different tip clearances[J]. Chinese Journal of Aeronautics, 2021, 34(9): 168-177. |
9 | COUTIER-DELGOSHA O, CAIGNAERT G, BOIS G, et al. Influence of the blade number on inducer cavitating behavior[J]. Journal of Fluids Engineering, 2012, 134(8): 081304. |
10 | LI X, LI J W, WANG J, et al. Study on cavitation instabilities in a three-bladed inducer[J]. Journal of Propulsion and Power, 2015, 31(4): 1051-1056. |
11 | KIM S, CHOI C H, KIM J H, et al. Tip clearance effects on cavitation evolution and head breakdown in turbopump inducer[J]. Journal of Propulsion and Power, 2013, 29(6): 1357-1366. |
12 | KIKUTA K, YOSHIDA Y, WATANABE M, et al. Thermodynamic effect on cavitation performances and cavitation instabilities in an inducer[J]. Journal of Fluids Engineering, 2008, 130(11): 111302. |
13 | WANG C M, XIANG L, TAN Y H, et al. Experimental investigation of thermal effect on cavitation characteristics in a liquid rocket engine turbopump inducer[J]. Chinese Journal of Aeronautics, 2021, 34(8): 48-57. |
14 | FRANC J P, BOITEL G, RIONDET M, et al. Thermodynamic effect on a cavitating inducer—Part I: Geometrical similarity of leading edge cavities and cavitation instabilities[J]. Journal of Fluids Engineering, 2010, 132(2): 021303. |
15 | YAMANISHI N, FUKAO S, QIAO X Y, et al. LES simulation of backflow vortex structure at the inlet of an inducer[J]. Journal of Fluids Engineering, 2007, 129(5): 587-594. |
16 | 项乐, 李春乐, 许开富, 等. 诱导轮超同步旋转空化传播机理[J]. 火箭推进, 2022, 48(2): 76-85. |
XIANG L, LI C L, XU K F, et al. Inducer super-synchronous rotating cavitation propagation mechanism[J]. Journal of Rocket Propulsion, 2022, 48(2): 76-85 (in Chinese). | |
17 | IGA Y, NOHML M, GOTO A, et al. Numerical analysis of cavitation instabilities arising in the three-blade cascade[J]. Journal of Fluids Engineering, 2004, 126(3): 419-429. |
18 | LI Y M, CHEN H, XIANG L, et al. Numerical analysis and suppression of rotating cavitation in inducers[C]∥ The 3rd International Symposium of Cavitation and Multiphase Flow. 2019. |
19 | SUN T Z, WANG Z H, ZOU L, et al. Numerical investigation of positive effects of ventilated cavitation around a NACA66 hydrofoil[J]. Ocean Engineering, 2020, 197: 106831. |
20 | YU A, LUO X W, YANG D D, et al. Experimental and numerical study of ventilation cavitation around a NACA0015 hydrofoil with special emphasis on bubble evolution and air-vapor interactions[J]. Engineering Computations, 2018, 35(3): 1528-1542. |
21 | WANG C C, HUANG B, ZHANG M D, et al. Effects of air injection on the characteristics of unsteady sheet/cloud cavitation shedding in the convergent-divergent channel[J]. International Journal of Multiphase Flow, 2018, 106: 1-20. |
22 | LIU T T, HUANG B, WANG G Y, et al. Experimental investigation of the flow pattern for ventilated partial cavitating flows with effect of Froude number and gas entrainment[J]. Ocean Engineering, 2017, 129: 343-351. |
23 | BARRIOS L, PRADO M G. Modeling two-phase flow inside an electrical submersible pump stage[J]. Journal of Energy Resources Technology, 2011, 133(4): 042902. |
24 | VERDE W M, BIAZUSSI J L, SASSIM N A, et al. Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers[J]. Experimental Thermal and Fluid Science, 2017, 85: 37-51. |
25 | GAMBOA J. Prediction of the transition in two-phase performance of an electrical submersible pump[D]. Tulsa: The University of Tulsa, 2009. |
26 | BARRIOS L. Visualization and modeling of multiphase performance inside an electrical submersible pump[D]. Tulsa: The University of Tulsa, 2007. |
27 | BURNS A D, FRANK T, HAMILL I, et al. The favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows[C]∥ 5th International Conference on Multiphase Flow. 2004. |
28 | YOKOTA K, KURAHARA K, KATAOKA D, et al. A study of swirling backflow and vortex structure at the inlet of an inducer[J]. JSME International Journal Series B, 1999, 42(3): 451-459. |
29 | 项乐, 陈晖, 谭永华, 等. 诱导轮空化流动特性实验研究[J]. 农业机械学报, 2019, 50(12): 125-132. |
XIANG L, CHEN H, TAN Y H, et al. Experiment of cavitating flow characteristics of inducer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 125-132 (in Chinese). | |
30 | TSUJIMOTO Y, HORIGUCHI H, QIAO X Y. Backflow from inducer and its dynamics[C]∥ Proceedings of ASME 2005 Fluids Engineering Division Summer Meeting. New York: ASME, 2008: 1483-1494. |
31 | 于安. 补气对水轮机尾水管压力脉动及涡流特性的影响分析[D]. 北京: 清华大学, 2017. |
YU A. Analysis of the pressure fluctuations and vortical flow characteristics in a francis turbine draft tube with air admission[D].Beijing: Tsinghua University, 2017 (in Chinese). | |
32 | 廖伟丽, 姬晋廷, 逯鹏, 等. 水轮机主轴中心孔补气对尾水管内部流态的影响[J]. 水利学报, 2008, 39(8): 1005-1011. |
LIAO W L, JI J T, LU P, et al. Effect of air admission through center hole of turbine shaft on the flow in draft tube[J]. Journal of Hydraulic Engineering, 2008, 39(8): 1005-1011 (in Chinese). | |
33 | CHEN C K, NICOLET C, YONEZAWA K, et al. One-dimensional analysis of full load draft tube surge[J]. Journal of Fluids Engineering, 2008, 130(4): 041106. |
34 | TSUJIMOTO Y, KAMIJO K, YOSHIDA Y. A theoretical analysis of rotating cavitation in inducers[J]. Journal of Fluids Engineering, 1993, 115(1): 135-141. |
35 | TSUJIMOTO Y, KAMIJO K, BRENNEN C E. Unified treatment of flow instabilities of turbomachines[J]. Journal of Propulsion and Power, 2001, 17(3): 636-643. |
36 | WATANABE S, TSUJIMOTO Y. Prediction of cavitation surge onset point by one-dimensional stability analysis[J]. International Journal of Fluid Machinery and Systems, 2021, 14(2): 199-207. |
/
〈 |
|
〉 |