论文

来流含不凝性气体的诱导轮空化流动实验研究

  • 林荣浩 ,
  • 陈晖 ,
  • 项乐 ,
  • 屈念冲
展开
  • 西安航天动力研究所,西安 710100
.E-mail: lin1018abc@163.com

收稿日期: 2023-06-01

  修回日期: 2023-07-24

  录用日期: 2023-08-23

  网络出版日期: 2023-09-13

基金资助

国家重大基础研究项目(613321)

Experimental study on cavitating flow characteristics of inducer with inflow entrained non⁃condensable gas

  • Ronghao LIN ,
  • Hui CHEN ,
  • Le XIANG ,
  • Nianchong QU
Expand
  • Xi’an Aerospace Institute,Xi’an 710100,China
E-mail: lin1018abc@163.com

Received date: 2023-06-01

  Revised date: 2023-07-24

  Accepted date: 2023-08-23

  Online published: 2023-09-13

Supported by

National Basic Research Program of China(613321)

摘要

为研究来流含有的不凝性气体对诱导轮空化流动的影响,基于诱导轮泵注气空化流动可视化实验台进行了一系列实验,得到了不同入口不凝性气体含气率下诱导轮泵的外特性、空化区发展形态以及相应的空化不稳定特性。结果表明:随着入口不凝性气体含气率的增加,诱导轮的扬程断裂空化数上升;随着来流不凝性气体含气率的增加,不凝性气体被泄漏涡和回流涡卷吸,导致泄漏涡空化以及回流涡空化长度显著延长;此外,不凝性气体在小空化数(Φ=0.083、σ=0.090和Φ=0.071、σ=0.068)下增加了空穴的可压缩性,从而对空化喘振具有一定的抑制作用。

本文引用格式

林荣浩 , 陈晖 , 项乐 , 屈念冲 . 来流含不凝性气体的诱导轮空化流动实验研究[J]. 航空学报, 2024 , 45(11) : 529095 -529095 . DOI: 10.7527/S1000-6893.2023.29095

Abstract

To study the effect of inflow entrained non-condensable gas on cavitating flow inside the inducer, a series of experiments are performed based on the visualization experimental platform. The macroscopic performance, cavitation development and cavitation instabilities of the inducer pump with different inlet gas volume fractions are investigated. It is found that the head breakdown occurred earlier at larger inlet gas volume fractions. Additionally, the non-condensable gas is entrained in leakage flow vortices and backflow vortices,resulting in significant extensions of leakage flow vortex cavities and backflow vortex cavities, under larger inlet non-condensable gas entrained condition. With small cavitation numbers (Φ=0.083, σ=0.090, and Φ=0.071, σ=0.068), the non-condensable gas provides extra cavitation compliance to the cavity and therefore suppresses the cavitation surge.

参考文献

1 陈晖, 张恩昭, 谭永华, 等. 高速平板诱导轮的结构设计与分析[J]. 火箭推进200935(3): 1-5.
  CHEN H, ZHANG E Z, TAN Y H, et al. Geometry design and analysis of the high-speed rotational plate inducer[J]. Journal of Rocket Propulsion200935(3): 1-5 (in Chinese).
2 杨宝锋, 李斌, 陈晖, 等. 液体火箭发动机推进剂泵诱导轮与离心轮的匹配[J]. 航空学报201940(5): 122609.
  YANG B F, LI B, CHEN H, et al. Matching effect between inducer and impeller in a liquid rocket engine propellant pump[J]. Acta Aeronautica et Astronautica Sinica201940(5): 122609 (in Chinese).
3 NAGAI H, NODA K, YAMAZAKI I, et al. Status of H-II rocket first stage propulsion system[J]. Journal of Propulsion and Power19928(2): 313-319.
4 DUSSOLLIER G, TEISSIER A. Ariane 5 main stage oxygen tank pressurization: AIAA-1993-1969[R]. Reston: AIAA, 1993.
5 TSUJIMOTO Y, YOSHIDA Y, MAEKAWA Y, et al. Observations of oscillating cavitation of an inducer[J]. Journal of Fluids Engineering1997119(4): 775-781.
6 ZOLADZ T. Observations on rotating cavitation and cavitation surge from the development of the Fastrac engine turbopump: AIAA-2000-3403[R]. Reston: AIAA, 2000.
7 LETTIERI C, SPAKOVSZKY Z, JACKSON D, et al. Characterization of cavitation instabilities in a four-bladed turbopump inducer[J]. Journal of Propulsion and Power201834(2): 510-520.
8 XIANG L, TAN Y H, CHEN H, et al. Experimental investigation of cavitation instabilities in inducer with different tip clearances[J]. Chinese Journal of Aeronautics202134(9): 168-177.
9 COUTIER-DELGOSHA O, CAIGNAERT G, BOIS G, et al. Influence of the blade number on inducer cavitating behavior[J]. Journal of Fluids Engineering2012134(8): 081304.
10 LI X, LI J W, WANG J, et al. Study on cavitation instabilities in a three-bladed inducer[J]. Journal of Propulsion and Power201531(4): 1051-1056.
11 KIM S, CHOI C H, KIM J H, et al. Tip clearance effects on cavitation evolution and head breakdown in turbopump inducer[J]. Journal of Propulsion and Power201329(6): 1357-1366.
12 KIKUTA K, YOSHIDA Y, WATANABE M, et al. Thermodynamic effect on cavitation performances and cavitation instabilities in an inducer[J]. Journal of Fluids Engineering2008130(11): 111302.
13 WANG C M, XIANG L, TAN Y H, et al. Experimental investigation of thermal effect on cavitation characteristics in a liquid rocket engine turbopump inducer[J]. Chinese Journal of Aeronautics202134(8): 48-57.
14 FRANC J P, BOITEL G, RIONDET M, et al. Thermodynamic effect on a cavitating inducer—Part I: Geometrical similarity of leading edge cavities and cavitation instabilities[J]. Journal of Fluids Engineering2010132(2): 021303.
15 YAMANISHI N, FUKAO S, QIAO X Y, et al. LES simulation of backflow vortex structure at the inlet of an inducer[J]. Journal of Fluids Engineering2007129(5): 587-594.
16 项乐, 李春乐, 许开富, 等. 诱导轮超同步旋转空化传播机理[J]. 火箭推进202248(2): 76-85.
  XIANG L, LI C L, XU K F, et al. Inducer super-synchronous rotating cavitation propagation mechanism[J]. Journal of Rocket Propulsion202248(2): 76-85 (in Chinese).
17 IGA Y, NOHML M, GOTO A, et al. Numerical analysis of cavitation instabilities arising in the three-blade cascade[J]. Journal of Fluids Engineering2004126(3): 419-429.
18 LI Y M, CHEN H, XIANG L, et al. Numerical analysis and suppression of rotating cavitation in inducers[C]∥ The 3rd International Symposium of Cavitation and Multiphase Flow. 2019.
19 SUN T Z, WANG Z H, ZOU L, et al. Numerical investigation of positive effects of ventilated cavitation around a NACA66 hydrofoil[J]. Ocean Engineering2020197: 106831.
20 YU A, LUO X W, YANG D D, et al. Experimental and numerical study of ventilation cavitation around a NACA0015 hydrofoil with special emphasis on bubble evolution and air-vapor interactions[J]. Engineering Computations201835(3): 1528-1542.
21 WANG C C, HUANG B, ZHANG M D, et al. Effects of air injection on the characteristics of unsteady sheet/cloud cavitation shedding in the convergent-divergent channel[J]. International Journal of Multiphase Flow2018106: 1-20.
22 LIU T T, HUANG B, WANG G Y, et al. Experimental investigation of the flow pattern for ventilated partial cavitating flows with effect of Froude number and gas entrainment[J]. Ocean Engineering2017129: 343-351.
23 BARRIOS L, PRADO M G. Modeling two-phase flow inside an electrical submersible pump stage[J]. Journal of Energy Resources Technology2011133(4): 042902.
24 VERDE W M, BIAZUSSI J L, SASSIM N A, et al. Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers[J]. Experimental Thermal and Fluid Science201785: 37-51.
25 GAMBOA J. Prediction of the transition in two-phase performance of an electrical submersible pump[D]. Tulsa: The University of Tulsa, 2009.
26 BARRIOS L. Visualization and modeling of multiphase performance inside an electrical submersible pump[D]. Tulsa: The University of Tulsa, 2007.
27 BURNS A D, FRANK T, HAMILL I, et al. The favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows[C]∥ 5th International Conference on Multiphase Flow. 2004.
28 YOKOTA K, KURAHARA K, KATAOKA D, et al. A study of swirling backflow and vortex structure at the inlet of an inducer[J]. JSME International Journal Series B199942(3): 451-459.
29 项乐, 陈晖, 谭永华, 等. 诱导轮空化流动特性实验研究[J]. 农业机械学报201950(12): 125-132.
  XIANG L, CHEN H, TAN Y H, et al. Experiment of cavitating flow characteristics of inducer[J]. Transactions of the Chinese Society for Agricultural Machinery201950(12): 125-132 (in Chinese).
30 TSUJIMOTO Y, HORIGUCHI H, QIAO X Y. Backflow from inducer and its dynamics[C]∥ Proceedings of ASME 2005 Fluids Engineering Division Summer Meeting. New York: ASME, 2008: 1483-1494.
31 于安. 补气对水轮机尾水管压力脉动及涡流特性的影响分析[D]. 北京: 清华大学, 2017.
  YU A. Analysis of the pressure fluctuations and vortical flow characteristics in a francis turbine draft tube with air admission[D].Beijing: Tsinghua University, 2017 (in Chinese).
32 廖伟丽, 姬晋廷, 逯鹏, 等. 水轮机主轴中心孔补气对尾水管内部流态的影响[J]. 水利学报200839(8): 1005-1011.
  LIAO W L, JI J T, LU P, et al. Effect of air admission through center hole of turbine shaft on the flow in draft tube[J]. Journal of Hydraulic Engineering200839(8): 1005-1011 (in Chinese).
33 CHEN C K, NICOLET C, YONEZAWA K, et al. One-dimensional analysis of full load draft tube surge[J]. Journal of Fluids Engineering2008130(4): 041106.
34 TSUJIMOTO Y, KAMIJO K, YOSHIDA Y. A theoretical analysis of rotating cavitation in inducers[J]. Journal of Fluids Engineering1993115(1): 135-141.
35 TSUJIMOTO Y, KAMIJO K, BRENNEN C E. Unified treatment of flow instabilities of turbomachines[J]. Journal of Propulsion and Power200117(3): 636-643.
36 WATANABE S, TSUJIMOTO Y. Prediction of cavitation surge onset point by one-dimensional stability analysis[J]. International Journal of Fluid Machinery and Systems202114(2): 199-207.
文章导航

/