基于低阶干扰估计器的欠驱动三自由度直升机鲁棒控制
收稿日期: 2023-05-29
修回日期: 2023-06-21
录用日期: 2023-08-30
网络出版日期: 2023-09-13
基金资助
国家自然科学基金(62373386)
Robust control of underactuated 3-DOF helicopter based on lower order disturbance estimator
Received date: 2023-05-29
Revised date: 2023-06-21
Accepted date: 2023-08-30
Online published: 2023-09-13
Supported by
National Natural Science Foundation of China(62373386)
针对模型不确定且外部未知扰动影响显著的欠驱动三自由度(3-DOF)直升机,本文设计、分析并实验验证了一种基于不确定性与干扰估计器(UDE)的主动抗扰控制策略。具体地,针对该直升机平台动力学耦合严重且存在欠驱动特性等问题,基于全驱动系统控制思想,发展了一种基于反馈线性化的升降角和偏航角轨迹跟踪策略,同时实现了内部状态(俯仰角)的镇定;在内外环三通道虚拟控制中,进一步设计了一阶UDE,并联合UDE和标称控制,构建了可有效补偿三通道模型不确定和外部扰动的鲁棒控制方案。该方案较好应对了被控对象的欠驱动特性,控制信号连续且光滑,同时干扰补偿器还具有设计参数少、性能调节简单且清晰等优点。借助于奇异摄动理论,分析了闭环系统跟踪误差的收敛性、输入-状态稳定性、及UDE参数对误差最终界的影响规律,揭示了闭环控制系统潜在的多时间尺度属性。仿真和实验结果验证了干扰补偿的必要性,UDE的有效性和其调参的便捷性。
杨梓霄 , 李世尧 , 魏晨 , 李湛 , 朱波 . 基于低阶干扰估计器的欠驱动三自由度直升机鲁棒控制[J]. 航空学报, 2024 , 45(1) : 629056 -629056 . DOI: 10.7527/S1000-6893.2023.29056
An active disturbance rejection control strategy based on Uncertainty and Disturbance Estimator (UDE) is designed, analyzed, and validated for underactuated 3-Degree-of-Freedom (3-DOF) helicopter affected by significant model uncertainties and external disturbances. In detail, an attitude trajectory tracking strategy of the elevation and travel angles is developed using feedback linearization based on the idea of full-drive theory for the helicopter experimental setup, which exhibits severe dynamic coupling and obvious underactuated characteristics, while the stabilization of the internal state (pitch angle) is guaranteed. Then, the first-order UDE is further proposed and combined with nominal control law to construct a robust control scheme for the design of the virtual control algorithm of the three channels with inner-outer loop structure, which can effectively compensate for uncertainty and external disturbance of the helicopter. The control scheme addresses the underactuated characteristics of the plant with continuous and smooth control signals, while the disturbance compensator has fewer parameters and the adjustment of system performance is concise and clear. Based on the singular perturbation theory, the convergence of tracking error, the input-state stability of the closed-loop system, and the influence of UDE parameters on the ultimate bound of tracking error are analyzed. In addition, the potential multiple time scale attributes of the system are revealed. The necessity of disturbance compensation, the effectiveness of UDE, and the convenience of control parameters adjustment are verified by both simulation and experimental results.
1 | 孙宁, 方勇纯. 一类欠驱动系统的控制方法综述[J]. 智能系统学报, 2011, 6(3): 200-207. |
SUN N, FANG Y C. A review for the control of a class of underactuated systems[J]. CAAI Transactions on Intelligent Systems, 2011, 6(3): 200-207 (in Chinese). | |
2 | PARK M S, CHWA D, HONG S K. Semi-global stabilization of a class of underactuated euler-lagrange systems by backstepping approach[C]∥ 2006 SICE-ICASE International Joint Conference. Piscataway: IEEE Press, 2007: 811-815. |
3 | WANG W, YI J, ZHAO D, et al. Design of a stable sliding-mode controller for a class of second-order underactuated systems[J]. IEEE Proceedings-Control Theory and Applications, 2004, 151(6): 683-690. |
4 | JIANG Z P. Global tracking control of underactuated ships by Lyapunov’s direct method[J]. Automatica, 2002, 38(2): 301-309. |
5 | FANG Y, DIXON W E, DAWSON D M, et al. Nonlinear coupling control laws for an underactuated overhead crane system[J]. IEEE/ASME Transactions on Mechatronics, 2003, 8(3): 418-423. |
6 | DUAN G R. High-order fully actuated system approaches: Part Ⅲ. Robust control and high-order backstepping[J]. International Journal of Systems Science, 2021, 52(5): 952-971. |
7 | DUAN G R. High-order fully-actuated system approaches: Part Ⅵ. disturbance attenuation and decoupling[J]. International Journal of Systems Science, 2021, 52(10): 2161-2181. |
8 | ISHUTKINA M A. Design and implementation of a supervisory safety controller for a 3DOF helicopter[D]. Cambridge: Massachusetts Institute of Technology, 2004. |
9 | ZHU B, ZHANG Q R, LIU H H T. Design and experimental evaluation of robust motion synchronization control for multivehicle system without velocity measurements[J]. International Journal of Robust and Nonlinear Control, 2018, 28(17): 5437-5463. |
10 | LIU H, LU G, ZHONG Y S. Robust LQR attitude control of a 3-DOF laboratory helicopter for aggressive maneuvers[J]. IEEE Transactions on Industrial Electronics, 2013, 60(10): 4627-4636. |
11 | LI C A, YANG X B, XIAO B. Adaptive attitude tracking control of a 3-degrees-of-freedom experimental helicopter with actuator dead-zone[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019, 233(1): 91-99. |
12 | ZHENG B, ZHONG Y S. Robust attitude regulation of a 3-DOF helicopter benchmark: Theory and experiments[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 660-670. |
13 | PLESTAN F, CHRIETTE A. A robust controller based on adaptive super-twisting algorithm for a 3DOF helicopter[C]∥ 2012 IEEE 51st IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2013: 7095-7100. |
14 | MEHNDIRATTA M, KAYACAN E. Receding horizon control of a 3 DOF helicopter using online estimation of aerodynamic parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(8): 1442-1453. |
15 | YANG X B, ZHENG X L. Adaptive NN backstepping control design for a 3-DOF helicopter: Theory and experiments[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 3967-3979. |
16 | ZHU X Y, LI D D. Robust attitude control of a 3-DOF helicopter considering actuator saturation[J]. Mechanical Systems and Signal Processing, 2021, 149: 107209. |
17 | 韩京清. 一类不确定对象的扩张状态观测器[J]. 控制与决策, 1995, 10(1): 85-88. |
HAN J Q. The “extended state observer” of a class of uncertain systems[J]. Control and Decision, 1995, 10(1): 85-88 (in Chinese). | |
18 | DU Y W, CAO W H, SHE J H, et al. Disturbance rejection and control system design using improved equivalent input disturbance approach[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 3013-3023. |
19 | HOU Q K, DING S H. GPIO based super-twisting sliding mode control for PMSM[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(2): 747-751. |
20 | 刘璟龙, 张崇峰, 邹怀武, 等. 基于干扰观测器的柔性空间机器人在轨精细操作控制方法[J]. 航空学报, 2021, 42(1): 523899. |
LIU J L, ZHANG C F, ZOU H W, et al. On-orbit precise operation control method for flexible joint space robots based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523899 (in Chinese). | |
21 | LI J F, JAHANSHAHI H, KACAR S, et al. On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control[J]. Chaos, Solitons & Fractals, 2021, 145: 110681. |
22 | ZHONG Q C, REES D. Control of uncertain LTI systems based on an uncertainty and disturbance estimator[J]. Journal of Dynamic Systems, Measurement, and Control, 2004, 126(4): 905-910. |
23 | ZHONG Q C, KUPERMAN A, STOBART R K. Design of UDE-based controllers from their two-degree-of-freedom nature[J]. International Journal of Robust and Nonlinear Control, 2011, 21(17): 1994-2008. |
24 | TALOLE S E, PHADKE S B. Robust input–output linearisation using uncertainty and disturbance estimation[J]. International Journal of Control, 2009, 82(10): 1794-1803. |
25 | ZHU B, ZHANG Q R, LIU H H T. A comparative study of robust attitude synchronization controllers for multiple 3-DOF helicopters[C]∥ 2015 American Control Conference (ACC). Piscataway: IEEE Press, 2015: 5960-5965. |
26 | REN B B, ZHONG Q C, CHEN J H. Robust control for a class of nonaffine nonlinear systems based on the uncertainty and disturbance estimator[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5881-5888. |
27 | LU Q, REN B B, PARAMESWARAN S. Uncertainty and disturbance estimator-based global trajectory tracking control for a quadrotor[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3): 1519-1530. |
28 | KOLHE J P, SHAHEED M, CHANDAR T S, et al. Robust control of robot manipulators based on uncertainty and disturbance estimation[J]. International Journal of Robust and Nonlinear Control, 2013, 23(1): 104-122. |
29 | LONDHE P S, DHADEKAR D D, PATRE B M, et al. Uncertainty and disturbance estimator based sliding mode control of an autonomous underwater vehicle[J]. International Journal of Dynamics and Control, 2017, 5(4): 1122-1138. |
30 | ZHU B, LIU H H T, LI Z. Robust distributed attitude synchronization of multiple three-DOF experimental helicopters[J]. Control Engineering Practice, 2015, 36: 87-99. |
31 | YIN Z, HE W, KAYNAK O, et al. Uncertainty and disturbance estimator-based control of a flapping-wing aerial vehicle with unknown backlash-like hysteresis[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4826-4835. |
32 | 李世尧, 张特, 朱波, 等. 三自由度直升机多刚体动力学建模与参数辨识[J/OL]. 吉林大学学报(工学版), (2022-07-26) [2023-05-27]. . |
LI S Y, ZHANG T, ZHU B, et al. Multi-rigid-body dynamics and parameter identification of a 3-DOF helicopter[J/OL]. Journal of Jilin University (Engineering and Technology Edition), (2022-07-26) [2023-05-27]. (in Chinese). | |
33 | 段广仁. 高阶系统方法: I.全驱系统与参数化设计[J]. 自动化学报, 2020, 46(7): 1333-1345. |
DUAN G R. High-order system approaches: I. fully-actuated systems and parametric designs[J]. Acta Automatica Sinica, 2020, 46(7): 1333-1345 (in Chinese). | |
34 | NALDI R, FURCI M, SANFELICE R G, et al. Robust global trajectory tracking for underactuated VTOL aerial vehicles using inner-outer loop control paradigms[J]. IEEE Transactions on Automatic Control, 2017, 62(1): 97-112. |
35 | MALLIK R. Robust control approaches for minimizing the bandwidth ratio in multi-loop control[DB/OL]. arXiv preprint: 2203.09022, 2022. |
36 | 固高科技. GHP2002型三自由度直升机[EB/OL]. (2014-08-15) [2023-05-27]. . |
GOOGOL TECH. GHP 2002 3-degree-of-freedom helicopter[EB/OL]. (2014-08-15) [2023-05-27]. (in Chinese). | |
37 | ZHANG T, LI S Y, ZHU B, et al. TV-UDE: Time-varying uncertainty and disturbance estimator[J]. International Journal of Robust and Nonlinear Control, 2023, 33(16): 9579-9601. |
38 | XU L X, QIN K Y, TANG F, et al. UDE-based dynamic surface control for quadrotor drone attitude tracking under non-ideal actuators[J]. Drones, 2023, 7(5): 305. |
39 | CHEN J H, REN B B, ZHONG Q C. UDE-based trajectory tracking control of piezoelectric stages[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6450-6459. |
40 | BEKER O, HOLLOT C V, CHAIT Y. Plant with integrator: An example of reset control overcoming limitations of linear feedback[J]. IEEE Transactions on Automatic Control, 2001, 46(11): 1797-1799. |
41 | KHALIL H K. Nonlinear systems[M]. 3rd ed. Upper Saddle River: Prentice Hall, 2002: 612-618. |
/
〈 |
|
〉 |