有限空间竖直壁面的结冰特性
收稿日期: 2023-07-10
修回日期: 2023-07-16
录用日期: 2023-08-07
网络出版日期: 2023-09-06
基金资助
上海飞机设计研究院设计试验验证能力建设项目;国家自然科学基金(12172110)
Icing characteristics of vertical test object in limited space
Received date: 2023-07-10
Revised date: 2023-07-16
Accepted date: 2023-08-07
Online published: 2023-09-06
Supported by
Shanghai Aircraft Design and Research Institute Design Test Verification Capacity Building Project;National Natural Science Foundation of China(12172110)
基于工程项目的实际需求,探究了如何在竖直实验件表面获得不同类型、均匀、可重复的冰层。首先搭建了一套喷雾结冰实验台:选择合适的空气雾化喷嘴及供水、供气设备,并匹配能够提供足够冷量的中型尺寸冷库。选择相应量程范围的各类传感器,用于监测实验过程中的温度、压力等参数。然后,依托喷雾结冰实验台研究了喷嘴喷雾的结冰特性。通过调节喷嘴水、气管路入口压力改变喷嘴喷雾水流量与喷雾粒径,匹配不同的环境温度,在实验件表面得到了不同覆冰类型的冰层,并对相应的工况进行了实验可重复性验证。最后,对背景项目所需要的结冰效果进行了工况探索,为项目设计实施方案的选择提供支持。
陈方备 , 戴铮 , 崔燚 , 吴健 . 有限空间竖直壁面的结冰特性[J]. 航空学报, 2023 , 44(S2) : 729294 -729294 . DOI: 10.7527/S1000-6893.2023.29294
Based on the practical needs of engineering projects, this paper explores how to obtain different types of uniform and repeatable ice layers on the surface of vertical test object. Firstly, a set of spray icing experiment platform is built, including suitable air atomization nozzle and water and gas supply equipment, the cold storage that can provide sufficient cooling capacity, and various kinds of sensors with corresponding range to monitor the temperature, pressure and other parameters during the experiment. Then, the icing characteristics of nozzle spray are studied based on the platform. By adjusting the water and the gas inlet pressure of the nozzle to change the spray water flow rate and the spray particle size, and matching different ambient temperature, different icing types are obtained on the surface of the test object, and the experimental repeatability is verified for the corresponding working conditions. Finally, the icing effect required by the project is explored to provide support for the selection of project design and implementation scheme.
1 | 束珺, 徐东光, 韩志熔, 等. 结冰风洞过冷大水滴试验中混合翼设计[J]. 航空学报, 2023, 44(1): 627182. |
SHU J, XU D G, HAN Z R, et al. Hybrid wing design of icing wind tunnel supercooled large droplet icing test[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627182 (in Chinese). | |
2 | 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(): 726371. |
LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726371 (in Chinese). | |
3 | LI L K, TIAN L C, LIU Y, et al. An experimental study on a hot-air-based anti-/ de-icing system for the icing protection of aero-engine inlet guide vanes[C]∥ SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale: SAE International, 2020. |
4 | HE X F, AI J L. Taxiing stability verification and airworthiness certification for amphibious aircraft[J]. Science China Information Sciences, 2019, 62(1): 10207. |
5 | 符澄, 宋文萍, 彭强, 等. 结冰风洞过冷大水滴结冰条件模拟能力综述[J]. 实验流体力学, 2017, 31(4): 1-7. |
FU C, SONG W P, PENG Q, et al. An overview of supercooled large droplets icing condition simulation capability in icing wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 1-7 (in Chinese). | |
6 | FLEMMING R, ALLDRIDGE P, DOEPPNER R. Artificial icing tests of the S-92A helicopter in the McKinley climatic laboratory[C]∥ Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
7 | CAO Y H, TAN W Y, SU Y A, et al. The effects of icing on aircraft longitudinal aerodynamic characteristics[J]. Mathematics, 2020, 8(7): 1171. |
8 | 王绍龙, 李岩, 田川公太朗, 等. 旋转叶片结冰风洞试验研究[J]. 工程热物理学报, 2017, 38(6): 1229-1236. |
WANG S L, LI Y, TAGAWA K, et al. A wind tunnel experimental study on icing distribution of rotating blade[J]. Journal of Engineering Thermophysics, 2017, 38(6): 1229-1236 (in Chinese). | |
9 | 李岩, 王绍龙, 易贤, 等. 绕轴旋转圆柱结冰特性结冰风洞试验[J]. 航空学报, 2017, 38(2): 520703. |
LI Y, WANG S L, YI X, et al. An icing wind tunnel test on icing characteristics of cylinder rotating around a shaft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520703 (in Chinese). | |
10 | 李岩, 王绍龙, 冯放, 等. 绕轴旋转翼型结冰分布的结冰风洞试验研究[J]. 哈尔滨工程大学学报, 2017, 38(4): 545-553. |
LI Y, WANG S L, FENG F, et al. An icing wind tunnel experiment on the icing distribution of a blade airfoil rotating around a shaft[J]. Journal of Harbin Engineering University, 2017, 38(4): 545-553 (in Chinese). | |
11 | SUNDEN B, WU Z. On icing and icing mitigation of wind turbine blades in cold climate[J]. Journal of Energy Resources Technology, 2015, 137(5): 051203. |
12 | PARENT O, ILINCA A. Anti-icing and de-icing techniques for wind turbines: Critical review[J]. Cold Regions Science and Technology, 2011, 65(1): 88-96. |
13 | 张旋. 过冷水滴的结冰与碰撞及其耦合特性研究[D]. 北京: 清华大学, 2019: 40-59. |
ZHANG X. Research on freezing and impact processes of supercooled water droplet and their coupling characteristics[D]. Beijing: Tsinghua University, 2019: 40-59 (in Chinese). | |
14 | 范瑶. 液滴撞击低温金属壁面行为特性研究[D]. 重庆: 重庆大学, 2016: 15-36. |
FAN Y. Experimental study of droplet impact on undercooling metal surface[D]. Chongqing: Chongqing University, 2016: 15-36 (in Chinese). | |
15 | 尚宇恒, 白博峰, 侯予, 等. 液滴撞击过冷壁面的结冰特性实验研究[J]. 西安交通大学学报, 2021, 55(10): 144-149. |
SHANG Y H, BAI B F, HOU Y, et al. Experimental research for freezing characteristics of droplets impacting on supercooled surface[J]. Journal of Xi’an Jiaotong University, 2021, 55(10): 144-149 (in Chinese). | |
16 | Society of Automotive Engineers. Calibration and acceptance of icing wind tunnels:SAE ARP-5905 [S]. New York: Society of Automotive Engineers, 2015. |
17 | YEONG Y H, SOKHEY J, LOTH E. Ice adhesion on superhydrophobic coatings in an icing wind tunnel[M]∥ Contamination mitigating polymeric coatings for extreme environments. Cham: Springer International Publishing, 2018: 99-121. |
18 | Atmospheric icing of structures: [S]. Geneva: International Organization for Standardization, 2017. |
19 | ZHENG M, GUO Z Q, DONG W, et al. Experimental investigation on ice accretion on a rotating aero-engine spinner with hydrophobic coating[J]. International Journal of Heat and Mass Transfer, 2019, 136: 404-414. |
/
〈 |
|
〉 |