为研究高速飞行时复合式直升机旋翼受上洗时的驱转特性,在已有的直升机飞行性能模型基础上建立复合式直升机配平模型。以X3直升机为样例,探讨在旋翼受上洗流作用的驱转状态下升力分配和旋翼变转速对旋翼和直升机飞行性能的影响。研究表明:旋翼受上洗流作用时,从气流中吸收的能量随速度增加而增多,旋翼阻力功率增大。上洗流作用下的桨盘叶素扭矩分布与低速时的不同,产生驱转扭矩的区域明显增加,阻转扭矩较高的区域由后行侧变为前行侧。减小机翼安装角会降低机翼的升力占比,导致旋翼阻力功率增加,对旋翼吸收气流能量有利,提升受上洗流作用时旋翼和直升机的性能。速度为400 km/h时,机翼安装角为8°的旋翼阻力功率比10°时高11.2%,旋翼和直升机升阻比增加了35.7%和2.6%。中高速飞行时,过度降低旋翼转速会导致机体抬头,旋翼吸收的气流能量增加。速度大于340 km/h后,机体保持水平,旋翼阻力功率减少,降旋翼转速不利于气流提供能量。然而,高速飞行时复合式直升机旋翼降转速有利于减少旋翼功率消耗、提升其飞行性能。
In order to study the driving rotation characteristics of a compound helicopter’s rotor undergoing the upwash in high-speed flight, a compound helicopter trim model is established on the basis of an existing helicopter flight performance model. With a helicopter example similar to X3 helicopter, the effects of lift share and variable rotor speed on the flight performance of the rotor and helicopter are analyzed in the driving rotation state undergoing the upwash. The results show that the energy absorbed from the airflow increases with the increase of speed due to the upwash, and the rotor drag power increases. The torque distribution is different from that in low speed flight. The blade elements that produce the driving torque increase significantly, and the area with larger resistance torque shifts from the retreating blade to the advancing blade. Decreasing the incidence angle of the wing reduces the proportion of the wing lift, which results in an increase in the rotor drag power. It is beneficial for the rotor to absorb energy from the airflow and improve the perfor-mance of the rotor and helicopter, as the rotor undergoes an upwash flow. At 400 km/h, the rotor drag power with the wing incidence angle of 8° is 11.2% higher than that of 10°, and the lift-to-drag ratios of the rotor and helicopter increase by 35.7% and 2.6%. In medium or high speed flight, excessive reduction of the rotor speed causes the fuselage to pitch up, and the energy absorbed from the airflow by the rotor increases. As the flight speed is larger than 340 km/h, the fuselage remains horizontal, and the rotor drag power is reduced. Reducing the rotor speed is not beneficial for the airflow to pro-vide energy. However, reducing the rotor speed of the compound helicopter in high-speed flight is beneficial for reducing the rotor power consumption and improving the flight performance.
[1] 吴希明, 吕乐丰, 张广林. 民用高速旋翼飞行器发展战略分析及关键技术展望[J]. 南京航空航天大学学报, 2022, 54(5): 827-835.
[2] 李春华, 樊枫, 徐明. 共轴刚性旋翼构型高速直升机发展研究[J]. 航空科学技术, 2021, 32(1): 47-52.
[3] 李建波. 复合式直升机技术发展分析[J]. 南京航空航天大学学报, 2016, 48(2): 149-158.
[4] 黄明其, 徐栋霞, 何龙, 等. 常规旋翼构型复合式高速直升机发展概况及关键技术[J]. 航空动力学报, 2021, 36(6): 1156-1168.
[5] SUGAWARA H, TANABE Y, KAMEDA M. Effect of Lift-Share Ratio on Aerodynamic Performance of Winged Compound Helicopter[J]. Journal of Aircraft, 2021, 58(5): 997-1009.
[6] ESCOBAR D, YEO H. Performance and Loads of a Wing-Offset Compound Helicopter[C]//AIAA SCI-TECH 2022 Forum, San Diego, 2022.
[7] LIU X X, LIN L L, PENG M H, et al. The Optimization Design of Lift Distribution and Propeller Performance for Rotor/Wing Compound Helicopter[C]//Asia-Pacific International Symposium on Aerospace Technology, 2019: 1092-1107.
[8] YANG K L, HAN D, SHI Q P. Study on the lift and propulsive force shares to improve the flight performance of a compound helicopter[J]. Chinese Journal of Aeronautics, 2022, 35(1): 365-375.
[9] 曹飞, 陈铭. 一种单旋翼复合式直升机性能特性[J]. 北京航空航天大学学报, 2016, 42(4): 772-779.
[10] 王焕瑾, 高正. 转换式高速直升机RD15方案[J]. 航空学报, 2005, 26(1): 36-39.
[11] NAGARAJ V T, CHOPRA I. Dynamics considerations for high speed flight of compound helicop-ters[C]//Proceedings of the American Helicopter Society 58th Annual Forum, Montreal, 2002.
[12] BERRY B, CHOPRA I. Performance and vibratory load measurements of a slowed-rotor at high advance rati-os[C]//Proceedings of the American Helicopter Society 68th Annual Forum, Fort Worth, 2012.
[13] YEO H, JOHNSON W. Aeromechanics Analysis of a Heavy Lift Slowed-Rotor Compound Helicopter[J]. Journal of Aircraft, 2007, 44(2): 501-508.
[14] FLOROS M W, JOHNSON W. Performance Analysis of the Slowed-Rotor Compound Helicopter Configura-tion[J]. Journal of the American Helicopters Society, 2009, 54(2): 0220021–02200212.
[15] YEO H, JOHNSON W. Optimum Design of a Com-pound Helicopter[J]. Journal of Aircraft, 2009, 46(4): 1210-1221.
[16] GUDMUNDSSON S. General aviation aircraft de-sign[M].Oxford, UK: Butterworth-Heinemann Press, 2006.
[17] SEKULA M K, GANDHI F. Effects of Auxiliary Lift and Propulsion an Helicopter Vibration Reduction and Trim [J]. Journal of Aircraft, 2004, 41(3): 645-656.
[18] 原昕, 招启军, 赵国庆. 轴流状态对转螺旋桨气动性能高效预测方法[J/OL]. 航空动力学报,(2023-04-18)[2023-05-28]. https://doi.org/10.13224/j.cnki.jasp.20210567.
[19] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006: 56-63.
[20] SANKAR L N. Principles of Helicopter Aerodynamics. JG Leishman[M]. Applied Mechanics R-eviews, 2001, 54: B15.
[21] PADFIELD G D. Helicopter Flight Dynamics[M]. Se-cond Edition. Washington, D.C.: American Institute of Aeronautics and Astronautics, 2007: 115-119.
[22] PITT D M, PETRES D A. Rotor dynamic inflow deriv-atives and time constants from various inflow models[D]. Washington, D.C.:Washington University, 1980.
[23] PETERS D A, HAQUANG N. Technical Note: Dynam-ic Inflow for Practical Applications[J]. Journal of the American Helicopter Society, 1988, 33(4): 64-68.
[24] 陈仁良, 高正. 直升机飞行动力学[M]. 第二版. 北京: 科学出版社, 2019: 37-46.