航空发动机高性能制造专栏

基于实例迁移学习的跨工况刀具剩余寿命预测

  • 强碧瑶 ,
  • 史恺宁 ,
  • 任军学 ,
  • 史耀耀
展开
  • 1.西北工业大学 机电学院,西安 710072
    2.西北工业大学 航空发动机高性能制造工信部重点实验室,西安 710072
    3.西北工业大学 航空发动机先进制造技术教育部工程研究中心,西安 710072

收稿日期: 2023-05-24

  修回日期: 2023-06-12

  录用日期: 2023-07-30

  网络出版日期: 2023-09-06

基金资助

国家自然科学基金(51905442);国家科技重大专项(J2019-VII-0001-0141)

Instance transfer for tool remaining useful life prediction cross working conditions

  • Biyao QIANG ,
  • Kaining SHI ,
  • Junxue REN ,
  • Yaoyao SHI
Expand
  • 1.School of Mechanical Engineering,Northwestern Polytechnical University,Xi’an 710072,China
    2.Key Laboratory of High Performance Manufacturing for Aero Engine,Ministry of Industry and Information Technology,Northwestern Polytechnical University,Xi’an 710072,China
    3.Engineering Research Center of Advanced Manufacturing Technology for Aero Engine,Ministry of Education,Northwestern Polytechnical University,Xi’an 710072,China

Received date: 2023-05-24

  Revised date: 2023-06-12

  Accepted date: 2023-07-30

  Online published: 2023-09-06

Supported by

National Natural Science Foundation of China(51905442);National Major Science and Technology Projects of China(J2019-VII-0001-0141)

摘要

精确可靠的刀具剩余寿命预测可以减少加工过程中刀具过度使用和未充分使用的比率,从而最大限度地提高加工可靠性并降低生产成本。传统机器学习方法在预测刀具剩余寿命时依赖于训练数据和测试数据遵循相同分布的假设,以及广泛的离线测量数据。然而在实际加工过程中,由于加工条件的变化和有限的刀具磨损数据,致使传统方法在跨工况预测刀具剩余寿命时精度较差。针对该问题,提出一种基于实例迁移学习的刀具剩余寿命预测方法,以达到准确预测跨工况条件下刀具剩余寿命的目的。首先,利用迁移学习算法动态调整多个源域中所有实例的权重,充分利用与目标数据高度相关的源域信息来改善模型的泛化能力,从而利用少量目标域数据预测目标工况下的刀具剩余寿命。其次,为了提升迁移学习算法的时间序列预测能力,开发了递归高斯过程回归模型作为基学习器,通过延迟反馈对相邻时刻的刀具剩余寿命进行约束,与此同时还减少了特征准备工作并降低了模型复杂度。结果表明,该方法可以有效提升跨工况下刀具剩余寿命的预测精度,预测效果也证实了方法的稳定性和可靠性。

本文引用格式

强碧瑶 , 史恺宁 , 任军学 , 史耀耀 . 基于实例迁移学习的跨工况刀具剩余寿命预测[J]. 航空学报, 2024 , 45(13) : 629038 -629038 . DOI: 10.7527/S1000-6893.2023.29038

Abstract

Accurate and reliable predictions of tool remaining useful life could reduce the rate of over-utilization and under-utilization of tools during machining, thereby maximizing the machining reliability and reducing production costs. Traditional machine learning methods for tool remaining useful life prediction rely heavily on the assumption that training and test data follow the same distribution, as well as extensive offline measurement data. However, in actual machining process, prediction accuracy of the traditional methods is reduced due to the variation in machining conditions and limited tool wear data. To address this problem, an Instance-based Transfer Learning framework is proposed to accurately predict the tool remaining useful life cross different working conditions. Firstly, a transfer learning algorithm is used to dynamically adjust the weights of all instances in multiple source domains, which aims to make full use of the source domain information that is highly correlated with the target data. Thus, the generalization ability of the model is improved, and the remaining tool life of the target working conditions could be well predicted with only a small amount of target domain data. Secondly, recurrent Gaussian process regression model is further developed as the base learner to improve the time series prediction capability of the transfer learning algorithm. The model limits the tool remaining useful life at adjacent moments through delayed feedback, while reducing the feature preparation time and the model complexity are reduced. The results indicate that the proposed framework can effectively improve the prediction accuracy of the tool remaining useful life cross different working conditions, and the prediction effectiveness also confirms the stability and reliability of the framework.

参考文献

1 彭振龙, 张翔宇, 张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报202243(4): 525587.
  PENG Z L, ZHANG X Y, ZHANG D Y. High-speed ultrasonic vibration cutting for difficult-to-machine materials in aerospace field[J]. Acta Aeronautica et Astronautica Sinica202243(4): 525587 (in Chinese).
2 万鹏, 李迎光, 刘长青, 等. 基于域对抗门控网络的变工况刀具磨损精确预测方法[J]. 航空学报202142(10): 524879.
  WAN P, LI Y G, LIU C Q, et al. Method for accurate prediction of tool wear under varying cutting conditions based on domain adversarial gating neural network[J]. Acta Aeronautica et Astronautica Sinica202142(10): 524879 (in Chinese).
3 张晟斐, 李天梅, 胡昌华, 等. 基于深度卷积生成对抗网络的缺失数据生成方法及其在剩余寿命预测中的应用[J]. 航空学报202243(8): 225708.
  ZHANG S F, LI T M, HU C H, et al. Missing data generation method and its application in remaining useful life prediction based on deep convolutional generative adversarial network[J]. Acta Aeronautica et Astronautica Sinica202243(8): 225708 (in Chinese).
4 刘斌, 许靖, 霍美玲, 等. 基于多尺度自适应注意力网络的剩余寿命预测[J]. 航空学报202344(5): 226918.
  LIU B, XU J, HUO M L, et al. Remaining useful life prediction based on multi-scale adaptive attention network[J]. Acta Aeronautica et Astronautica Sinica202344(5): 226918 (in Chinese).
5 BAGRI S, MANWAR A, VARGHESE A, et al. Tool wear and remaining useful life prediction in micro-milling along complex tool paths using neural networks[J]. Journal of Manufacturing Processes202171: 679-698.
6 常钰, 魏乐, 王瑞祥. 数据驱动的刀具剩余寿命预测方法综述[J]. 电子技术与软件工程2020 (19): 193-197.
  CHANG Y, WEI L, WANG R X. Summary of data-driven prediction methods for tool remaining life[J]. Electronic Technology & Software Engineering2020(19): 193-197 (in Chinese).
7 ZHU K P, ZHANG Y. A generic tool wear model and its application to force modeling and wear monitoring in high speed milling[J]. Mechanical Systems and Signal Processing2019115: 147-161.
8 GOMATHI K, BALAJI A. Tool condition monitoring of PCB milling machine based on vibration analysis[J]. Materials Today: Proceedings202145: 3386-3397.
9 COOPER C, WANG P, ZHANG J J, et al. Convolutional neural network-based tool condition monitoring in vertical milling operations using acoustic signals[J]. Procedia Manufacturing202049: 105-111.
10 QIANG B Y, SHI K N, LIU N, et al. Application of cutting power consumption in tool condition monitoring and wear prediction based on Gaussian process regression under variable cutting parameters[J]. The International Journal of Advanced Manufacturing Technology2023124(1): 37-50.
11 刘胜辉, 张人敬, 张淑丽, 等. 基于深度神经网络的切削刀具剩余寿命预测[J]. 哈尔滨理工大学学报201924(3): 1-8.
  LIU S H, ZHANG R J, ZHANG S L, et al. Prediction of remaining life of cutting tool based on DNN[J]. Journal of Harbin University of Science and Technology201924(3): 1-8 (in Chinese).
12 ZHU T, WANG W B, YU M. A novel hybrid scheme for remaining useful life prognostic based on secondary decomposition,BiGRU and error correction[J]. Energy2023276: 127565.
13 SHEN B, GUI Y F, CHEN B, et al. Application of spindle power signals in tool condition monitoring based on HHT algorithm[J]. The International Journal of Advanced Manufacturing Technology2020106(3): 1385-1395.
14 ZHU Y M, WU J C, WU J, et al. Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion[J]. Reliability Engineering & System Safety2022218: 108179.
15 WU J, SU Y H, CHENG Y W, et al. Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system[J]. Applied Soft Computing201868(C): 13-23.
16 KUMAR A, CHINNAM R B, TSENG F. An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools[J]. Computers and Industrial Engineering2019128(C): 1008-1014.
17 LI H, WANG W, LI Z W, et al. A novel approach for predicting tool remaining useful life using limited data[J]. Mechanical Systems and Signal Processing2020143: 106832
18 LI D H, LI Y G, LIU C Q. Gaussian process regression model incorporated with tool wear mechanism[J]. Chinese Journal of Aeronautics202235(10): 393-400.
19 LIU C F, ZHU L D. A two-stage approach for predicting the remaining useful life of tools using bidirectional long short-term memory[J]. Measurement2020164: 108029.
20 AN Q L, TAO Z R, XU X W,et al. A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network[J]. Measurement2020154: 107461.
21 ZHU Y M, ZI Y Y, XU J, et al. An unsupervised dual-regression domain adversarial adaption network for tool wear prediction in multi-working conditions[J]. Measurement2022200: 111644.
22 ZHOU J T, ZHAO X, GAO J. Tool remaining useful life prediction method based on LSTM under variable working conditions[J]. The International Journal of Advanced Manufacturing Technology2019104(9): 4715-4726.
23 蔡伟立, 胡小锋, 刘梦湘. 基于迁移学习的刀具剩余寿命预测方法[J]. 计算机集成制造系统202127(6): 1541-1549.
  CAI W L, HU X F, LIU M X. Prediction method of tool remaining useful life based on transfer learning[J]. Computer Integrated Manufacturing Systems202127(6): 1541-1549 (in Chinese).
24 XIAO Y Q, WANG J Q, HE Z M, et al. Deep transfer learning with metric structure for fault diagnosis[J]. Knowledge-Based Systems2022256: 109826.
25 王妍, 胡小锋. 基于深度迁移学习的刀具剩余寿命预测[J]. 组合机床与自动化加工技术2022(8): 133-136.
  WANG Y, HU X F. Prediction of tool remaining useful life based on deep transfer learning[J]. Modular Machine Tool & Automatic Manufacturing Technique2022(8): 133-136 (in Chinese).
26 张倩, 李海港, 李明, 等. 基于多源动态TrAdaBoost的实例迁移学习方法[J]. 中国矿业大学学报201443(4): 713-720.
  ZHANG Q, LI H G, LI M,et al. Instance-based transfer learning method using multi-source dynamic TrAdaBoost[J]. Journal of China University of Mining & Technology201443(4): 713-720 (in Chinese).
27 DAI W Y, YANG Q, XUE G R, et al. Boosting for transfer learning[C]∥ Proceedings of the 24th International Conference on Machine Learning. New York: ACM, 2007: 193-200.
28 PARDOE D, STONE P. Boosting for regression transfer[C]∥ Proceedings of the 27th International Conference on International Conference on Machine Learning. New York: ACM, 2010: 863-870.
29 QIANG B Y, SHI K N, LIU N, et al. Integrating physics-informed recurrent Gaussian process regression into instance transfer for predicting tool wear in milling process[J]. Journal of Manufacturing Systems202368: 42-55.
30 International Organization for Standardization. Tool life testing in end milling: [S]. 1989.
31 LIU Z Y, GUO Y B, SEALY M P, et al. Energy consumption and process sustainability of hard milling with tool wear progression[J]. Journal of Materials Processing Technology2016229: 305-312.
32 SHI K N, ZHANG D H, LIU N, et al. A novel energy consumption model for milling process considering tool wear progression[J]. Journal of Cleaner Production2018184: 152-159.
文章导航

/