航空发动机数字孪生专栏

数字孪生驱动的机械工艺系统研究进展

  • 戚浩 ,
  • 李晓月 ,
  • 陶强 ,
  • 李亮
展开
  • 1.青岛大学 机电工程学院,青岛 266075
    2.南京航空航天大学 机电学院,南京 210016
.E-mail: xiaoyuelee@qdu.edu.cn

收稿日期: 2023-05-06

  修回日期: 2023-06-23

  录用日期: 2023-08-14

  网络出版日期: 2023-09-06

基金资助

国家自然科学基金(52305476);山东省自然科学基金(ZR2022QE043)

Research progress of mechanical process system driven by digital twin

  • Hao QI ,
  • Xiaoyue LI ,
  • Qiang TAO ,
  • Liang LI
Expand
  • 1.College of Mechanical and Electrical Engineering,Qingdao University,Qingdao 266075,China
    2.College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

Received date: 2023-05-06

  Revised date: 2023-06-23

  Accepted date: 2023-08-14

  Online published: 2023-09-06

Supported by

National Natural Science Foundation of China(52305476);Shandong Natural Science Foundation(ZR2022QE043)

摘要

数字孪生技术以数字化方式创建物体虚拟模型,基于数据模拟物体现实中的行为,借助虚实反馈、数据融合分析、决策迭代优化等方式,达到缩短产品研发周期、降低成本的目的。机械工艺系统中存在诸多问题如加工过程监测实时性和交互性差、设备故障难以诊断、加工误差影响大等,数字孪生技术是解决这些问题的有效手段。本文阐述了数字孪生的基本概念和数字孪生驱动的机械工艺系统技术路线;归纳了基于数字孪生技术建立虚实交互系统、实现多模型融合以及数据感知、算法预测和智能决策的关键技术等;从产品设计、产品制造、产品服务3个阶段总结了数字孪生驱动的机械工艺系统在产品全生命周期各阶段的具体应用,实现了产品的方案制定、加工状态监测及预测、加工参数优化、设备预测性维护和加工工艺评价等功能;探讨了新兴使能技术为数字孪生驱动的机械工艺系统带来的机遇和挑战。从关键技术、应用方向和数据利用3方面展望了未来发展趋势,以期为后续研究提供参考。

本文引用格式

戚浩 , 李晓月 , 陶强 , 李亮 . 数字孪生驱动的机械工艺系统研究进展[J]. 航空学报, 2024 , 45(21) : 628970 -628970 . DOI: 10.7527/S1000-6893.2023.28970

Abstract

Digital twin technology creates a virtual model of the object in a digital way, simulates the behavior of the object in reality based on the data, and achieves the purpose of shortening the product development cycle and reducing the cost by means of virtual and real feedback, data fusion analysis, and decision iteration optimization. There are many problems in the mechanical process system, such as poor real-time and interactivity of machining process monitoring, difficulty in diagnosing equipment faults, and large influence of machining errors. Digital twin technology is an effective way to solve these problems. This paper expounds the basic concept of digital twin and the technical route of mechanical process system driven by digital twin. The key technologies of virtual-real interaction system, multi-model fusion, algorithm prediction and intelligent decision-making based on digital twin technology are summarized. The specific applications of digital twin-driven mechanical process systems in each stage of the product lifecycle: product design, product manufacturing and product service, are summarized, and the functions of scheme formulation, process monitoring, process parameter optimization, equipment predictive maintenance and process evaluation of machined parts are realized. The opportunities and challenges brought by emerging enabling technologies for mechanical process system driven by digital twin are discussed. The future development trend is prospected from three aspects: key technology, application direction and data utilization, in order to provide reference for subsequent research.

参考文献

1 周啸宇. 基于递归分析的机械加工过程状态监测[D]. 南昌: 南昌大学, 2022.
  ZHOU X Y. State monitoring of machining process based on recurrence analysis[D]. Nanchang: Nanchang University, 2022 (in Chinese).
2 吴定海, 任国全, 王怀光, 等. 基于卷积神经网络的机械故障诊断方法综述[J]. 机械强度202042(5): 1024-1032.
  WU D H, REN G Q, WANG H G, et al. The review of mechanical fault diagnosis methods based on convolutional neural network[J]. Journal of Mechanical Strength202042(5): 1024-1032 (in Chinese).
3 杨长远, 马赛, 韩勤锴. 基于多核监督流形学习的旋转机械故障诊断[J]. 航空动力学报202439(10): 20220184.
  YANG C Y, MA S, HAN Q K. Multi-kernel supervised manifold learning for rotating machinery fault diagnosis[J]. Journal of Aerospace Power202439(10): 20220184.
4 曹明, 黄金泉, 周健, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ: 气路、机械和FADEC系统故障诊断与预测[J]. 航空学报202243(9): 625573.
  CAO M, HUANG J Q, ZHOU J, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management I: Diagnosis and prognosis of engine gas path, mechanical and FADEC[J]. Acta Aeronautica et Astronautica Sinica202243(9): 625573 (in Chinese).
5 蒋栋年, 李炜. 多模型粒子滤波融合的机械系统寿命预测[J]. 控制工程201926(3): 448-453.
  JIANG D N, LI W. Research on remaining useful life prediction of mechanical systems based on fusion of multi-model particle filter[J]. Control Engineering of China201926(3): 448-453 (in Chinese).
6 郑刚, 饶金山, 吴雁, 等. 薄壁叶片侧铣变形误差补偿及刀位规划研究[J]. 制造技术与机床2021706(4): 126-130.
  ZHENG G, RAO J S, WU Y, et al. Research on error compensation of flank milling deformation and tool path planning of thin-walled blade[J]. Manufacturing Technology & Machine Tool2021706(4): 126-130 (in Chinese).
7 段飞宇. 基于复杂直纹面精加工的变形误差补偿及刀位优化研究[D]. 成都: 电子科技大学, 2020.
  DUAN F Y. Research on the compensation of deformation error and the optimization of tool position based on the fine machining of complex ruled surface[D]. Chengdu: University of Electronic Science and Technology of China, 2020 (in Chinese).
8 丁军, 古愉川, 黄霞, 等. 基于改进遗传算法优化人工神经网络的304不锈钢流变应力预测准确性研究[J]. 机械工程学报202258(10): 78-86.
  DING J, GU Y C, HUANG X, et al. Research on prediction accuracy of flow stress of 304 stainless steel based on artificial neural network optimized by improved genetic algorithm[J]. Journal of Mechanical Engineering202258(10): 78-86 (in Chinese).
9 曾莎莎, 彭卫平, 雷金. 基于混合算法的薄壁件铣削加工工艺参数优化[J]. 中国机械工程201728(7): 842-845, 851.
  ZENG S S, PENG W P, LEI J. Optimization of milling process parameters based on hybrid algorithm for thin-walled workpieces[J]. China Mechanical Engineering201728(7): 842-845, 851 (in Chinese).
10 陶飞, 张贺, 戚庆林, 等. 数字孪生十问: 分析与思考[J]. 计算机集成制造系统202026(1): 1-17.
  TAO F, ZHANG H, QI Q L, et al. Ten questions towards digital twin: analysis and thinking[J]. Computer Integrated Manufacturing Systems202026(1): 1-17 (in Chinese).
11 UEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering20112011: 1-14.
12 GLAESSGREN E H, STARGEL D. The digital twin paradigm for future NASA and U.S. air force vehicles[C]?∥53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference - Special Session on the Digital Twin. 2012.
13 赵敏. 数字虚体, 智能革命的助推器——解读《三体智能革命》[J]. 中国机械工程201829(1): 110-119.
  ZHAO M. Digital virtual body, booster of intelligent revolution-interpretation of “three-body intelligent revolution”[J]. China Mechanical Engineering201829(1): 110-119 (in Chinese).
14 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、 体系结构及其发展趋势[J]. 计算机集成制造系统201723(4): 753-768.
  ZHUANG C B, LIU J H, XIONG H, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems. 201723(4): 753-768 (in Chinese).
15 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统201824(1): 1-18.
  TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems201824(1): 1-18 (in Chinese).
16 工业数字孪生白皮书发布[J]. 工业控制计算机202134(12): 19.
  Industrial digital twin white paper release[J]. Industrial Control Computer202134 (12): 19 (in Chinese).
17 刘晓冰, 王姝婷, 白朝阳. 基于科学知识图谱的数字孪生发展可视化分析[J]. 计算机集成制造系统202228(6): 1673-1684.
  LIU X B, WANG S T, Bai Z Y. Visual analysis of digital twin development based on scientific knowledge graph[J]. Computer Integrated Manufacturing Systems202228(6): 1673-1684 (in Chinese).
18 郭万林. 机械产品全生命周期设计[J]. 中国机械工程2002(13): 79-84, 6.
  GUO W L. The total lifecycle design of mechanical products[J]. China Mechanical Engineering2002(13): 79-84, 6 (in Chinese).
19 LI J J, ZHOU G H, ZHANG C. A twin data and knowledge-driven intelligent process planning framework of aviation parts[J]. International Journal of Production Research. 202260(17): 5217-34.
20 王乐, 周军, 崔艳林. 数字孪生在航空发动机领域的应用分析[J]. 航空动力202016(5): 63-66.
  WANG L, ZHOU J, CUI Y L. Application of digital twin in aero engine[J]. Aerospace Power202016(5): 63-66 (in Chinese).
21 张俊涛. 基于数字孪生的薄壁件铣削加工变形控制研究[D]. 哈尔滨: 哈尔滨理工大学, 2022.
  ZHANG J T. Research on deformation control in thin wall milling based on digital twin[D]. Harbin: Harbin University of Science and Technology, 2022 (in Chinese).
22 陶飞, 刘蔚然, 张萌 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统201925(1): 1-18.
  TAO F, LIU W R, ZAHNG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems201925(1): 1-18 (in Chinese).
23 BRAND M V, CLEOPHAS L, GUNASEKARAN R, et al. Models meet data: challenges to create virtual entities for digital twins[C]∥2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). 2021: 225-228.
24 GHOSH A K, ULLAH A S, TETL R, et al. Developing sensor signal-based digital twins for intelligent machine tools[J]. Journal of Industrial Information Integration202124: 100242.
25 陶飞, 马昕, 戚庆林, 等. 数字孪生连接交互理论与关键技术[J]. 计算机集成制造系统202329(1): 1-10.
  TAO F, MA X, QI Q L, et al. Theory and key technologies of digital twin connection interaction[J]. Computer Integrated Manufacturing System202329(1): 1-10 (in Chinese).
26 钟华. 数控铣床数字孪生连接系统研究[D]. 南昌: 南昌大学, 2022.
  ZHONG H. Research on the digital twin connection system of CNC milling machine[D]. Nanchang: Nanchang University, 2022 (in Chinese).
27 QI Q L, TAO F, NEE A Y C. Chapter 1 - From service to digital twin service[M]. TAO F, QI Q L, NEE A Y C, editors. Digital twin driven service. Elsevier: Academic Press, 2022:1-31.
28 XIANG F, FAN J, KE S Q, et al. Chapter 2 - Digital twin-driven service collaboration[M]. TAO F, QI Q L, NEE A Y C, editors. Digital twin driven service. Elsevier: Academic Press, 2022: 33-58.
29 LI H, WANG H Q. Chapter 3 - Digital twin-driven production line custom design service[M]. TAO F, QI Q L, NEE A Y C, editors. Digital twin driven service. Elsevier: Academic Press, 2022: 59-88.
30 HONG L K Y, ZHENG P, LIEW D W. Chapter 4 - Digital twin-enhanced product family design and optimization service[M]. TAO F, QI Q L, NEE A Y C, editors. Digital twin driven service. Elsevier: Academic Press, 2022: 89-118.
31 LIU M, FANG S, DONG H, et al. Review of digital twin about concepts, technologies, and industrial applications[J]. Journal of Manufacturing Systems202158: 346-361.
32 刘永泉, 黎旭, 任文成, 等. 数字孪生助力航空发动机跨越发展[J]. 航空动力202119(2): 24-29.
  LIU Y Q, LI X, REN W C, et al. Digital twin boosting leap-forward development of aero engine[J]. Aerospace Power202119(2): 24-29 (in Chinese).
33 吴雄, 彭云龙, 张波, 等. 基于数字孪生的舰载机发动机健康管理技术[J]. 航空动力202227(4): 33-36.
  WU X, PENG Y L, ZHANG B, et al. Aero engine health management technology based on digital twin[J]. Aerospace Power202227(4): 33-36 (in Chinese).
34 李聪波, 孙鑫, 侯晓博, 等. 数字孪生驱动的数控铣削刀具磨损在线监测方法[J]. 中国机械工程202233(1): 78-87.
  LI C B, SUN X, HOU X B, et al. Online monitoring method for NC milling tool wear by digital twin-driven[J]. China Mechanical Engineering33(1), 2022: 78-87 (in Chinese).
35 路遥. 大型轴承座铣削加工过程中数字孪生监控系统研究[D]. 哈尔滨: 哈尔滨理工大学, 2022.
  LU Y. Research on digital twin monitoring system during milling of large bearing block[D]. Harbin: Harbin University of Science and Technology, 2022 (in Chinese).
36 李小龙. 基于数字孪生的机床加工过程虚拟监控系统研究与实现[D]. 成都: 电子科技大学, 2020.
  LI X L. Research and implementation of a virtual monitoring system for machine tools process based on digital twin[D]. Chengdu: University of Electronic Science and Technology of China, 2020 (in Chinese).
37 姜静. 基于数字孪生的数控机床加工路径优化方法研究[D]. 武汉: 武汉理工大学, 2019.
  JIANG J. Research on machining path method of CNC machine tools based on digital twin [D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese).
38 张雷, 刘检华, 庄存波, 等. 基于数字孪生的多轴数控机床轮廓误差抑制方法[J]. 计算机集成制造系统202127(12): 3391-3402.
  ZHANG L, LIU J H, ZHUANG C B, et al. Contour error reduction method for multi-axis CNC machine tools based on digital twin[J]. Computer Integrated Manufacturing Systems202127(12): 3391-3402 (in Chinese).
39 赵丽丽. 基于数字孪生的数控加工切削参数优化方法研究[D]. 武汉: 武汉理工大学, 2021.
  ZHAO L L. Research on cutting parameter optimization method of CNC machining based on digital twin[D]. Wuhan: Wuhan University of Technology, 2021 (in Chinese).
40 李典伦. 基于数字孪生技术的数控机床虚实交互监控系统设计与研究[D]. 兰州: 兰州理工大学, 2021.
  LI D L. Design and research of virtual and real interactive monitoring system for CNC machine tools based on digital twin technology[D]. Lanzhou: Lanzhou University of Technology, 2021 (in Chinese).
41 江雪梅, 袁子航, 娄平, 等. 一种基于数字孪生的重型数控机床碰撞检测方法[J]. 中国机械工程202233(22): 2647-2654, 2663.
  JIANG X M, YUAN Z H, LOU P, et al. A collision detection method of heavy-duty CNC machine tools based on digital twin[J]. China Mechanical Engineering202233(22): 2647-2654, 2663 (in Chinese).
42 刘劲松. 高档数控机床数字孪生关键技术研究与应用[D]. 沈阳: 中国科学院大学(中国科学院沈阳计算技术研究所), 2022.
  LIU J S. Research and application of key technology of digital twin for high-end CNC machine tools[D]. Shenyang: University of Chinese Academy of Sciences (Shenyang Institute of Computing Technology, Chinese Academy of Sciences), 2022 (in Chinese).
43 MA X, TAO F, ZHANG M, et al. Digital twin enhanced human-machine interaction in product lifecycle[J]. Procedia CIRP201983: 789-793.
44 DUAN J G, MA T Y, ZAHNG Q L, et al. Design and application of digital twin system for the blade-rotor test rig[J]. Journal of Intelligent Manufacturing. 202334(2): 753-769.
45 孙明波, 安彬, 汪洪波, 等. 超燃冲压发动机仿真:从数值飞行到数智飞行[J]. 力学学报202254(3): 588-600.
  SUN M B, AN B, WANG H B, et al. Numerical simulation of the scramjet engine: from numerical flight to intelligent numerical flight[J]. Chinese Journal of Theoretical and Applied Mechanics202254(3): 588-600 (in Chinese).
46 田效康. 基于数字孪生的机床加工过程虚拟仿真监控系统研究与实现[D]. 成都: 电子科技大学, 2021.
  TIAN X K. Research and implementation of virtual simulation monitoring system for machine tool machining process based on digital twin[D]. Chengdu: University of Electronic Science and Technology of China, 2021 (in Chinese).
47 田凌, 郑孟蕾, 代菁洲, 等. 基于图数据库的机械产品数字孪生模型分层建模方法: CN111881578A[P]. 2020-11-03.
  TIAN L, ZHENG M L, DAI J Z, et al. A layered modeling method for digital twin models of mechanical products based on graph database: CN111881578A[P]. 2020-11-03 (in Chinese).
48 郑孟蕾, 田凌. 基于时序数据库的产品数字孪生模型海量动态数据建模方法[J]. 清华大学学报(自然科学版)202161(11): 1281-1288.
  ZHENG M L, TIAN L. Digital product twin modeling of massive dynamic data based on a time-series database[J]. Journal of Tsinghua University(Science and Technology)202161(11): 1281-1288 (in Chinese).
49 郑孟蕾, 田凌. 基于区块链的机械产品数字孪生本体模型协同演进方法[J]. 计算机集成制造系统202329(6): 1781-1794.
  ZHENG M L, TIAN L. Blockchain-based collaborative evolution method for digital twin ontology model of mechanical products[J]. Computer Integrated Manufacturing Systems202329(6): 1781-1794 (in Chinese).
50 YAGCI T, HOSCHLER K, PANNIER S, et al. A structural health monitoring (SHM) approach using a multidisciplinary digital twin for high-pressure turbine discs in civil aviation[C]??∥The 7th International Conference on Integrity-Reliability-Failure (IRF). 2020: 491-502.
51 HU W Y, WANG T Y, CHU F L, A Wasserstein generative digital twin model in health monitoring of rotating machines[J]. Computers in Industry2023145: 103807.
52 LIANG Z S, WANG S T, PENG Y L, et al. The process correlation interaction construction of Digital Twin for dynamic characteristics of machine tool structures with multi-dimensional variables[J]. Journal of Manufacturing Systems202263: 78-94.
53 YU J S, SONG Y, TANG D Y, et al. A digital twin approach based on nonparametric Bayesian network for complex system health monitoring[J]. Journal of Manufacturing Systems202158: 293-304.
54 刘世民, 孙学民, 陆玉前, 等. 知识驱动的加工产品数字孪生拟态建模方法[J]. 机械工程学报202157(23): 182-194.
  LIU S M, SUN X M, LU Y Q, et al. A knowledge-driven digital twin modeling method for machining products based on biomimicry[J]. Journal of Mechanical Engineering202157(23): 182-194 (in Chinese).
55 LIU S M, BAO J, LU Y Q, et al. Digital twin modeling method based on biomimicry for machining aerospace components[J]. Journal of Manufacturing Systems202058:180-195.
56 LIU S M, SHEN H, LI J, et al. An adaptive evolutionary framework for the decision-making models of digital twin machining system[C]?∥2021 IEEE 17th International Conference on Automation Science and Engineering (CASE). 2021: 771-776.
57 李琳利, 李浩, 顾复, 等. 基于数字孪生的复杂机械产品多学科协同设计建模技术[J]. 计算机集成制造系统201925(6): 1307-1319.
  LI L L, LI H, GU F, et al. Multidisciplinary collaborative design modeling technologies for complex mechanical products based on digital twin[J]. Computer Integrated Manufacturing Systems201925(6): 1307-1319 (in Chinese).
58 沈慧, 刘世民, 许敏俊, 等. 面向加工领域的数字孪生模型自适应迁移方法[J]. 上海交通大学学报202256(1): 70-80.
  SHEN H, LIU S M, XU M J, et al. Adaptive transferring method of digital twin model for machining domain[J]. Journal of Shanghai Jiao Tong University202256(1): 70-80 (in Chinese).
59 孙惠斌, 潘军林, 张纪铎, 等. 面向切削过程的刀具数字孪生模型[J]. 计算机集成制造系统201925(6): 1474-1480.
  SUN H B, PAN J L, ZHANG J D, et al. Digital twin model for cutting tools in machining process[J]. Computer Integrated Manufacturing Systems201925(6): 1474-1480 (in Chinese).
60 张辰源, 陶飞. 数字孪生模型评价指标体系[J]. 计算机集成制造系统202127(8): 2171-2186.
  ZHANG C Y, TAO F. Evaluation index system for digital twin model[J]. Computer Integrated Manufacturing Systems202127(8): 2171-2186 (in Chinese).
61 BRAUN D, MVLLER T, SAHLAB N, et al. A graph-based knowledge representation and pattern mining supporting the digital twin creation of existing manufacturing systems[C]∥2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). 2022: 1-4.
62 惠恩明. 数控机床数字孪生自主感知技术研究[D]. 武汉: 华中科技大学, 2020.
  HUI E M. Research on digital twin self-awaring technology of NC machine tools[D]. Wuhan: Huazhong University of Science and Technology, 2020 (in Chinese).
63 付洋, 曹宏瑞, 郜伟强, 等. 数字孪生驱动的航空发动机涡轮盘剩余寿命预测[J]. 机械工程学报202157(22): 106-113.
  FU Y, CAO H R, GAO W Q, et al. Digital twin driven remaining useful life prediction for aero-engine turbine discs[J]. Journal of Mechanical Engineering202157(22): 106-113 (in Chinese).
64 巩超光, 胡天亮, 叶瑛歆. 基于数字孪生的铣削参数动态多目标优化策略[J]. 计算机集成制造系统202127(2): 478-486.
  GONG C G, HU T L, YE Y X. Dynamic multi-objective optimization strategy of milling parameters based on digital twin[J]. Computer Integrated Manufacturing Systems202127(2): 478-486 (in Chinese).
65 胡富琴, 杨芸, 刘世民, 等. 航天薄壁件旋压成型数字孪生高保真建模方法[J]. 计算机集成制造系统202228(5): 1282-1292.
  HU F Q, YANG Y, LIU S M, et al. Digital twin high-fidelity modeling method for spinning forming of aerospace thin-walled parts[J]. Computer Integrated Manufacturing Systems202228(5): 1282-1292 (in Chinese).
66 马兴瑞. 基于数字孪生模型的轴承故障特征生成与诊断方法研究[D]. 济南: 山东大学, 2022.
  MA X R. Research on fault feature generation and fault diagnosis based on digital twin model of bearing[D]. Ji’nan: Shandong University, 2022 (in Chinese).
67 宋飞虎, 王梦柯, 尹静, 等. 基于数字孪生控制的精密机床热误差模型[J]. 机电工程202340(3): 391-398.
  SONG F H, WANG M K, YIN J, et al. Thermal error model for precision machine tools based on digital twin control[J]. Journal Mechanical and Electrical Engineering: 202340(3): 391-398 (in Chinese).
68 拓云天, 崔洁, 王津沓, 等. 基于数字孪生的滚动轴承健康状态预测[J]. 制造技术与机床2022725(11): 156-162.
  TUO Y T. , CUI J, WANG J T, et al Predicting the health prediction of rolling bearings based on digital twin[J]. Manufacturing Technology and Machine Tool2022725(11): 156-162 (in Chinese).
69 LIU S M, LU Y Q, ZHENG P, et al. Adaptive reconstruction of digital twins for machining systems: A transfer learning approach[J]. Robotics and Computer-Integrated Manufacturing202278: 102390.
70 张海军, 闫琼, 张国辉, 等. 基于数字孪生的制造资源动态优选决策[J]. 计算机集成制造系统202127(2): 521-535.
  ZHANG H J, YAN Q, ZHANG G H, et al. Dynamic decision-making of manufacturing resource based on digital twin[J]. Computer Integrated Manufacturing Systems202127(2): 521-535 (in Chinese).
71 刘魁, 刘婷, 魏杰, 等. 数字孪生在航空发动机可靠性领域的应用探索[J]. 航空动力20199(4): 61-64.
  LIU K, LIU T, WEI J, et al. Digital twin and its potential application in the field of aero engine reliability[J]. Aerospace Power20199(4): 61-64 (in Chinese).
72 刘婷, 张建超, 刘魁. 基于数字孪生的航空发动机全生命周期管理[J]. 航空动力20181(1): 52-56.
  LIU T, ZHANG J C, LIU K. Aero engine life cycle management based on digital twin[J]. Aerospace Power 20181(1): 52-56 (in Chinese).
73 曹增义, 单继东, 王昭阳, 等. 面向航空发动机制造的数字孪生应用架构探索与实践[J]. 航空制造技术202265(19): 40-49.
  CAO Z Y, SHAN J D, WANG Z Y, et al. Exploration and practice of digital twin architecture for aero-engine manufacturing[J]. Aeronautical Manufacturing Technology202265(19): 40-49 (in Chinese).
74 任祝寅, 周华, 张健, 等. 数字孪生在航空发动机燃烧室设计阶段的应用与展望[J]. 航空制造技术202265(17): 34-39.
  REN Z Y, ZHOU H, ZHANG J, et al. Application and prospect of digital twin in design phase of aero-engine combustion chambers[J]. Aeronautical Manufacturing Technology 202265(17): 34-39 (in Chinese).
75 ZHANG M, SUI F Y, LIU A, et al. Chapter 1 - Digital twin driven smart product design framework[M]. TAOF, LIUA, HUT L, NEEAY C, editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 3-32.
76 WANG Y C, LIU A, TAO F, et al. Chapter 2 - Digital twin driven conceptual design[M]. TAO F, LIU A, HU T L, et al. editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 33-66.
77 WANG Y C, LIU L, LIU A. Chapter 3 - Conceptual design driven digital twin configuration[M]. TAO F, LIU A, HU T L, et al. editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 67-107.
78 WANG L, TAO F, LIU A, et al. Chapter 5 - Digital twin driven design evaluation[M]. In: TAO F, LIU A, HU T L, et al. editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 139-164.
79 XIANG F, HUANG Y Y, ZHANG Z, et al. Chapter 6 - Digital twin driven energy-aware green design[M]. TAO F, LIU A, HU T L, et al. editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 165-184.
80 HU T L, KONG T X, YE Y X, et al. Chapter 9 - Digital twin based computerized numerical control machine tool virtual prototype design[M]. TAO F, LIU A, HU T L, et al. editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 237-263.
81 WEI Y L, HU T L, ZHANG W L, et al. Chapter 10 - Digital twin driven lean design for computerized numerical control machine tools[M]. TAO F, LIU A, HU T L, et al. editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 265-287.
82 白仲航, 孙意为, 许彤, 等.基于设计任务的概念设计中产品数字孪生模型的构建[J]. 工程设计学报202027(6): 681-689.
  BAI Z H, SUN Y W, Xu T, et al. Construction of product digital twin model based on design task in conceptual design[J]. Chinese Journal of Engineering Design202027(6): 681-689 (in Chinese).
83 王昊琪, 李浩, 文笑雨, 等. 基于数字孪生的产品设计过程和工作量预测方法[J]. 计算机集成制造系统202228(1): 17-30.
  WANG H Q, Li H, WEN X Y, et al. Digital twin-based product design process and design effort prediction method[J]. Computer Integrated Manufacturing Systems202228(1): 17-30 (in Chinese).
84 李浩, 陶飞, 王昊琪, 等. 基于数字孪生的复杂产品设计制造一体化开发框架与关键技术[J]. 计算机集成制造系统201925(6): 1320-1336.
  LI H, TAO F, WANG H Q, et al. Integration framework and key technologies of complex product design-manufacturing based on digital twin[J]. Computer Integrated Manufacturing Systems201925(6): 1320-1336 (in Chinese).
85 PAN L D, GUO X K, LUAN Y, et al. Design and realization of cutting simulation function of digital twin system of CNC machine tool[J]. Procedia Computer Science2021183: 261-266.
86 ANBALAGAN A, SHIVAKRISHNA B, SRIKANTH K S, A digital twin study for immediate design/redesign of impellers and blades : Part 1: CAD modelling and tool path simulation[J] Materials Today: Proceedings202146(17): 8209-8217.
87 SHEN W D, HU T L, YIN Y S, et al. Chapter 11 - Digital twin based virtual commissioning for computerized numerical control machine tools[M]. TAO F, LIU A, HU T L, et al. editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 289-307.
88 WANG J, NIU X, GAO R X, et al. Digital twin-driven virtual commissioning of machine tool[J]. Robotics and Computer-Integrated Manufacturing202381: 102499.
89 HOWARD D, The digital twin: virtual validation in electronics development and design[C]?∥2019 Pan Pacific Microelectronics Symposium (Pan Pacific). 2019, 1-9.
90 王春晓. 基于数字孪生的数控机床多领域建模与虚拟调试关键技术研究[D]. 济南: 山东大学, 2018.
  WANG C X. Multi-domain modeling and virtual debugging of CNC machine tool based on digital twin[D]. Ji’nan: Shandong University, 2018 (in Chinese).
91 邓子毅. 面向发动机数字孪生工效虚拟人应用研究[D]. 天津: 中国民航大学, 2021.
  DENG Z Y. Research on the application of engine digital twin ergonomic virtual human[D]. Tianjin: Civil Aviation University of China, 2021 (in Chinese).
92 刘然, 刘虎沉. 基于数字孪生的产品制造过程质量管理研究[J]. 现代制造工程2022502(7): 50-56.
  LIU R, LIU H C. Research on quality management of product manufacturing process based on digital twin[J]. Modern Manufacturing Engineering 2022502(7): 50-56 (in Chinese).
93 马嵩华, 胡凯鑫, 胡天亮. 支持快速设计与性能跟踪的夹具数字孪生模型[J]. 计算机集成制造系统202228(9): 2718-2725.
  MA S H, HU K X, HU T L. Digital twins of fixtures supporting rapid design and performance tracking[J]. Computer Integrated Manufacturing Systems202228(9): 2718-2725 (in Chinese).
94 孟博洋, 李茂月, 刘献礼, 等. 机床智能控制系统体系架构及关键技术研究进展[J]. 机械工程学报202157(9): 147-166.
  MENG B Y, LI M Y, LIU X L, et al. Research progress on the architecture and key technologies of machine tool intelligent control system[J]. Journal of Mechanical Engineering202157(9): 147-166 (in Chinese).
95 LIU J S, DONG Y, BI X X, et al. The Research of ontology-based digital twin machine tool modeling[C]∥2020 IEEE 6th International Conference on Computer and Communications (ICCC). 2020: 2130-2134.
96 黄华, 李嘉然, 李典伦. 基于数字孪生的数控机床虚实交互监控系统设计[J]. 兰州理工大学学报202349(1): 36-43.
  HUANG H, LI J R, LI D L. Design of virtual real interactive monitoring system for CNC machine tools based on digital twins[J]. Journal of Lanzhou University of Technology202349(1): 36-43 (in Chinese).
97 王宇顺. 基于数字孪生的设备运行状态远程监测技术研究[D]. 武汉: 华中科技大学, 2020.
  WANG Y S. Remote monitoring technology of equipment operating status based on digital twin[D]. Wuhan: Huazhong University of Science and Technology, 2020 (in Chinese).
98 肖通, 江海凡, 丁国富, 等. 五轴磨床数字孪生建模与监控研究[J]. 系统仿真学报202133(12): 2880-2890.
  XIAO T, JIANG H F., DING G F, et al. Research on digital twin-based modeling and monitoring of five-axis grinder[J]. Journal of System Simulation202133(12): 2880-2890 (in Chinese).
99 谭飏, 张宇, 刘丽冰, 等. 面向动力学特性监测的主轴系统数字孪生体[J]. 中国机械工程202031(18): 2231-2238, 2246.
  TAN Y, ZHANG Y, LIU L B, et al. Spindle system digital twin for dynamics characteristic monitoring [J]. China Mechanical Engineering202031(18): 2231-2238, 2246 (in Chinese).
100 LV J H, LI X Y, SUN Y C, et al. A bio-inspired LIDA cognitive-based Digital Twin architecture for unmanned maintenance of machine tools[J]. Robotics and Computer-Integrated Manufacturing202380: 102489.
101 YANG X, RAN Y, ZHANG G B, et al. A digital twin-driven hybrid approach for the prediction of performance degradation in transmission unit of CNC machine tool[J] Robotics and Computer-Integrated Manufacturing202273: 102230.
102 LIU K, SONG L, HAN W, et al. Time-varying error prediction and compensation for movement axis of CNC machine tool based on digital twin[J]. IEEE Transactions on Industrial Informatics202218(1): 109-118.
103 陈艺文. 基于数字孪生表面模型的滚磨加工精细化仿真方法研究[D]. 太原: 太原理工大学, 2022.
  CHEN Y W. Research on precision simulation method of barrel finishing based on digital twin surface model[D]. Taiyuan: Taiyuan University of Technology, 2022 (in Chinese).
104 GHOSH A, ULLAH A, KUBO A. Hidden Markov model-based digital twin construction for futuristic manufacturing systems[J]. AI EDAM-Artificial Intelligence for Engineering Design Analysis and Manufacturing201933(3): 317-331.
105 ZHU Z X, XI X L, XU X, et al. Digital twin-driven machining process for thin-walled part manufacturing[J]. Journal of Manufacturing Systems202159: 453-466.
106 邹琦, 侯志霞, 王明阳. 机加零件的数字孪生模型构建方法[J]. 航空制造技术202063(3): 67-75.
  ZOU Q, HOU Z X, WANG M Y. Modeling method of digital twin models for machined parts[J] Aerospace Manufacturing Technology202063(3): 67-75 (in Chinese).
107 岳彩旭, 张俊涛, 刘献礼, 等. 薄壁件铣削过程加工变形研究进展[J]. 航空学报202243(4): 525164.
  YUE C X, ZHANG J T, Liu X L, et al. Research progress on machining deformation of thin-walled parts in milling process[J]. Acta Aeronautica et Astronautica Sinica202243(4): 525164 (in Chinese).
108 成彬, 樊琛. 数字节点链驱动的孪生工序动态模型构建[J]. 兵器装备工程学报202344(2): 69-76.
  CHENG B, FAN C. Construction of a twin processes dynamic model driven by digital node chains[J]. Journal of Ordnance Equipment Engineering202344(2): 69-76 (in Chinese).
109 朱宇, 李海宁, 曹志涛, 等. 数字孪生在航空发动机制造工艺中的应用探索[J]. 航空动力2019(4): 56-60.
  ZHU Y, LI H N, CAO Z T, et al. The Application of digital twin in manufacturing process of aero engine[J]. Aerospace Power2019(4): 56-60 (in Chinese).
110 杨康. 基于数字孪生的叶片动应变反演[D]. 北京: 北京化工大学, 2021.
  YANG K, Dynamic strain inversion of blade based on digital twin[D]. Beijing: Beijing University of Chemical Technology, 2021 (in Chinese).
111 QIAO Q Z, WANG J J, YE L K, et al. Digital twin for machining tool condition prediction[J]. Procedia CIRP201981: 1388-1393.
112 ZHANG H, QI Q L, JI W, et al. An update method for digital twin multi-dimension models[J]. Robotics and Computer-Integrated Manufacturing202380: 102481.
113 王军, 周婷婷, 衣明东. 金属切削刀具磨损监测技术研究进展[J]. 工具技术202155(1): 3-10.
  WANG J, ZHOU T T, YI M D. Review on research status of wear monitoring technology for metal cutting tool[J]. Tool Technology202155(1): 3-10 (in Chinese).
114 王军. 基于数字孪生的刀具磨损监测和预测方法研究[D]. 济南: 齐鲁工业大学, 2021.
  WANG J. Research on the monitoring and prediction method of cutting tool wear based on digital twin[D]. Ji’nan: Qilu University of Technology, 2021 (in Chinese).
115 李恒帅. 基于数字孪生技术的刀具磨损图像检测[D]. 哈尔滨: 哈尔滨理工大学, 2021.
  LI H S. Tool wear image detection based on digital twin technology[D]. Harbin: Harbin University of Science and Technology, 2021 (in Chinese).
116 宋清华, 彭业振, 王润琼, 等. 数字孪生驱动的薄壁件铣削刀具磨损状态识别方法[J]. 航空制造技术202366(3): 46-52, 60.
  SONG Q H, PENG Y Z, WANG R Q, et al. Tool wear state identification method of thin-walled parts milling process driven by digital twin[J]. Aerospace Manufacturing Technology202366 (3): 46-52, 60 (in Chinese).
117 张春霖, 周婷婷, 胡天亮, 等. 刀具切削变工况数字孪生模型构建方法研究[J]. 计算机集成制造系统202329(6): 1852-1866.
  ZHANG C L, ZHOU T T, HU T L, et al. Construction method of digital twin model for cutting tools under variable working conditions[J]. Computer Integrated Manufacturing Systems202329(6): 1852-1866.
118 谢楠, 寇锐, 刘雪梅. 基于云计算的刀具状态监测数字孪生系统研究[J]. 机械制造202159(3): 78-82, 92.
  XIE N, KOU R, LIU X M. Research on digital twin system monitoring of tool condition based on cloud computing[J]. Machinery202159(3): 78-82, 92 (in Chinese).
119 李亚. 数控机床刀具健康状态评估及预测技术研究[D]. 上海: 上海交通大学, 2020.
  LI Y. Research on health status evaluation and prediction of CNC tool[D] Shanghai: Shanghai Jiao Tong University, 2020 (in Chinese).
120 孙鑫. 基于数字孪生的数控铣削刀具磨损在线预测及节能工艺优化方法[D]. 重庆: 重庆大学, 2021.
  SUN X. On-line prediction of tool wear in CNC milling optimization of energy-saving technology based on digital twin[D] Chongqing: Chongqing University, 2021 (in Chinese).
121 XIE Y, LIAN K L, LIU Q, et al. Digital twin for cutting tool: Modeling, application and service strategy[J]. Journal of Manufacturing Systems202158: 305-312.
122 赵飞, 侯星宇, 王骏, 等. 基于数字孪生的新型四工位刀架设计[J]. 实验技术与管理202037(10): 144-150.
  ZHAO F, HOU X Y, WANG J, Design of new four-position tool holder based on digital twin[J]. Experimental Technology and Management202037(10): 144-150 (in Chinese).
123 WANG G, CAO Y S, ZHANG Y F. Digital twin-driven clamping force control for thin-walled parts[J]. Advanced Engineering Informatics202251: 101468.
124 WECKX S, ROBYNS S, BAAKE J, et al. A cloud-based digital twin for monitoring of an adaptive clamping mechanism used for high performance composite machining[J]. Procedia Computer Science2022200: 227-236.
125 刘明浩, 岳彩旭, 夏伟, 等. 基于数字孪生的铣刀状态实时监控[J]. 计算机集成制造系统: 202329(6): 2118-2129.
  LIU M H, YUE C X, XIA W, et al. Real-time monitoring of milling tool state based on digital twin[J]. Computer Integrated Manufacturing Systems202329(6): 2118-2129 (in Chinese).
126 崔馨予. 数控铣削数字孪生模型研究及面向能效的加工参数优化[D]. 哈尔滨: 哈尔滨工业大学, 2021.
  CUI X Y. Research on digital twin model for NC milling and optimization of machining parameters for energy efficiency[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese).
127 方喜峰, 张杰, 程德俊, 等. 数字孪生驱动的船用柴油机关键件加工质量管控方法[J]. 机械设计与制造2023, (3): 46-52.
  FANG X F, ZHANG J, CHENG D J, et al. Manufacturing quality control method of key parts of marine diesel driven by digital twin[J]. Machinery Design and Manufacture2023, (3): 46-52 (in Chinese).
128 张蕾. 基于数字孪生的设备预测性维护模式研究[J]. 电子工业专用设备202150(3): 12-15.
  ZHANG L. Research on predictive maintenance mode of equipment based on digital twin[J]. Equipment for Electronic Products202150(3): 12-15 (in Chinese).
129 CLASSENS K, WHEEMELS M, OOMEN T. Digital twins in mechatronics: from model-based control to predictive maintenance[C]∥2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). 2021: 336-339.
130 YU J S, TANG D Y. Chapter 8 - Digital twin-driven prognostics and health management[M]. TAO F, QI Q L, NEE A Y C, editors. Digital twin driven service. Elsevier: Academic Press, 2022: 205-250.
131 LUO W C, HU T L, YE Y X, et al. A hybrid predictive maintenance approach for CNC machine tool driven by digital twin[J]. Robotics and Computer-Integrated Manufacturing202065: 101974.
132 骆伟超. 基于Digital Twin的数控机床预测性维护关键技术研究[D]. 济南: 山东大学, 2020.
  LUO W C. Research on key technologies of machine tool predictive maintenance based on digital twin[D]. Ji’nan: Shandong University, 2020 (in Chinese).
133 王成城, 王金江, 黄祖广, 等. 智能制造预测性维护标准体系研究与应用[J]. 制造技术与机床2023728(2): 73-82.
  WANG C C, WANG J J, HUANG Z G, et al. Research and application of intelligent manufacturing predictive maintenance standard system[J]. Manufacturing Technology and Machine Tool2023728(2): 73-82 (in Chinese).
134 李晓, 陈雨晨, 阮渊鹏, 等. 基于DT的售后设备预测性维护协同模式研究[J]. 工业工程与管理202328(1): 67-80.
  LI X, CHEN Y C, RUAN Y P, et al. Research on collaborative model of predictive maintenance for after-sales equipment based on DT[J]. Industrial Engineering and Management202328(1): 67-80 (in Chinese).
135 陆剑峰, 徐煜昊, 夏路遥, 等. 数字孪生支持下的设备故障预测与健康管理方法综述[J]. 自动化仪表202243(6): 1-7, 12.
  LU J F, XU Y H, XIA L Y, et al. Review of digital twin-enabled device prognostics and health management approaches[J]. Process Automation Instrumentation202243(6): 1-7, 12 (in Chinese).
136 柳宇翀. 基于数字孪生技术的液压系统故障诊断与预测方法[D]. 大连: 大连理工大学, 2022.
  LIU Y C. A Hydraulic system fault diagnosis and prediction method based on digital twin technology[D]. Dalian: Dalian University of Technology, 2022 (in Chinese).
137 LIU J F, ZHOU H G, LIU X J . et al ., Dynamic evaluation method of machining process planning based on digital twin[J]. IEEE Access20197: 19312-19323.
138 赵鹏. 基于数字孪生的加工工艺评价方法研究[D]. 镇江: 江苏科技大学, 2021.
  ZHAO P. Research on evaluation method of machining process based on digital twin[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021 (in Chinese).
139 康献民, 陈尧, 王建生, 等. 机械装备的数字孪生结构参数分析与评价方法研究[J]. 机床与液压202250(19): 14-19.
  KANG X M, CHEN Y, WANG J S . et al. Research on digital twin parameter analysis and evaluation method of manipulator[J]. Machine Tool and Hydraulics202250(19): 14-19 (in Chinese).
140 PEREVERZEW P P, AKINTSEVA A V, ALSIGAR M K, et al. Designing optimal automatic cycles of round grinding based on the synthesis of digital twin technologies and dynamic programming method[J]. Mechanical Sciences201910(1): 331-341.
141 SUN H B, YAO Y. Chapter 7-Digital twin-driven cutting tool service[M]. TAO F, QI Q L, NEE A Y C, editors. Digital twin driven service. Elsevier: Academic Press, 2022: 173-203.
142 VISHNU V S, VARGHESE K G, GURUMOORTHY B. A data-driven digital twin of CNC machining processes for predicting surface roughness[J]. Procedia CIRP2021104: 1065-1070.
143 王岭. 基于数字孪生的航空发动机低压涡轮单元体对接技术研究[J]. 计算机测量与控制201826(10): 286-290, 303.
  WANG L. Research on the docking technology of final installation for aeroengine low pressure turbine unit based on digital twin[J]. Computer Measurement & Control201826(10): 286-290, 303 (in Chinese).
144 许敏俊, 刘世民, 沈慧, 等. 数字孪生驱动下的弱刚性钻削毛刺控制[J]. 计算机集成制造系统202329(4): 1115-1126.
  XU M J, LIU S M, SHEN H, et al. Burr control of weak rigid drilling process driven by digital twin[J]. Computer Integrated Manufacturing Systems202329(4): 1115-1126 (in Chinese).
145 周程辉. 基于数字孪生的渐进弯曲成形系统的研究[D]. 广州: 华南理工大学, 2021.
  ZHOU P C. Research on incremental bending forming system based on digital twin[D] Guangzhou: South China University of Technology, 2021 (in Chinese).
146 “碳达峰与碳中和关键技术”专辑[J]. 中南大学学报(自然科学版)202253(12): 4583.
  “Carbon Peak and carbon neutrality key technology” album[J]. Journal of Central South University (Natural Science Edition)202253(12): 4583 (in Chinese).
147 向峰, 黄圆圆, 张智, 等. 基于数字孪生的产品生命周期绿色制造新模式[J]. 计算机集成制造系统201925(6): 1505-1514.
  XIANG F, HUANG Y, ZHANG Z, et al. New paradigm of green manufacturing for product life cycle based on digital twin[J]. Computer Integrated Manufacturing Systems201925(6): 1505-1514 (in Chinese).
148 XIANG F, ZHANG Z, ZUO Y, et al. Digital twin driven green material optimal-selection towards sustainable manufacturing[J]. Procedia CIRP201981: 1290-1294.
149 LI L H, MAO C L, SUN H X, et al. Digital twin driven green performance evaluation methodology of intelligent manufacturing: hybrid model based on Fuzzy rough-sets AHP, multistage weight synthesis, and PROMETHEE II[J]. Complexity in Economics and Business20202020: 1-24.
150 KERIN M, HARTONO N. PHAM D T. Optimising remanufacturing decision-making using the bees algorithm in product digital twins[J]. Scientific Reports202313: 701.
151 陶飞, 张辰源, 张贺, 等. 未来装备探索: 数字孪生装备[J]. 计算机集成制造系统202228(1): 1-16.
  TAO F, ZHANG C Y, ZHANG H, et al. Future equipment exploration: digital twin equipment[J]. Computer Integrated Manufacturing Systems202228(1): 1-16 (in Chinese).
152 黄圆圆. 基于数字孪生的制造服务能耗评估方法研究[D]. 武汉: 武汉科技大学, 2020.
  HUANG Y Y. Research on manufacturing services energy consumption evaluation method based on digital twin[D]. Wuhan: Wuhan University of Science and Technology, 2020 (in Chinese).
153 刘魁, 王潘, 刘婷. 数字孪生在航空发动机运行维护中的应用[J]. 航空动力20199(4): 70-74.
  LIU K, WANG P, LIU T. The application of digital twin in aero engine operation and maintenance[J]. Aerospace Power20199(4): 70-74 (in Chinese).
154 高士根, 周敏, 郑伟, 等. 基于数字孪生的高端装备智能运维研究现状与展望[J]. 计算机集成制造系统202228(7): 1953-1965.
  GAO S G, ZHOU M, ZHENG W, et al. Intelligent operation and maintenance for advanced equipment based on digital twin: Challenges and future [J]. Computer Integrated Manufacturing Systems202228(7): 1953-1965 (in Chinese).
155 吕伟. 基于数字孪生的液压运维系统[J]. 机械制造202260(6): 40-44.
  LV W. Hydraulic operation and maintenance system based on digital twin[J]. Machinery202260(6): 40-44 (in Chinese).
156 陈晓红, 刘飞香, 艾彦迪, 等. 面向智能制造的工业数字孪生关键技术特性[J]. 科技导报202240(11): 45-54.
  CHEN X H, LIU F X, AI Y D, et al. Key characteristics analysis of industrial digital twins for smart manufacturing[J]. Science Technology Review202240(11): 45-54 (in Chinese).
157 黄彬彬, 张映锋, 黄博, 等. 数字孪生驱动的复杂产品智能运维服务体系与核心技术[J]. 机械工程学报202258(12): 250-260.
  HUANG B B, ZHANG Y F, HUANG B, et al. Architecture and key technologies of digital-twin-driven intelligent operation maintenance services for complex product[J]. Journal of Mechanical Engineering202258(12), 250-260 (in Chinese).
158 曹明, 王鹏, 左洪福, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ: 地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报202243(9): 625574.
  CAO M, WANG P, ZUO H F, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅱ: Comprehensive off-board diagnosis, life management and intelligent condition based MRO[J]. Acta Aeronautica et Astronautica Sinica202243(9): 625574 (in Chinese).
159 QI Q L, TAO F, HU T L, et al. Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems202158: 3-21.
160 隋少春, 许艾明, 黎小华, 等. 面向航空智能制造的DT与AI融合应用[J]. 航空学报202041(7): 624173.
  SUI S C, XU A M, LI X H, et al. Fusion application of DT and AI for aviation intelligent manufacturing[J]. Acta Aeronautica et Astronautica Sinica202041(7): 623173 (in Chinese).
161 TAO F, ZHANG M, NEE A Y C. Chapter 8 - Digital twin and cloud, fog, edge computing[M]. TAO F, ZHANG M, NEE A Y C, editors. Digital twin driven smart manufacturing. Elsevier: Academic Press, 2019: 171-181.
162 孟麒, 胡天亮, 马嵩华. 云-雾-边缘协同的数字孪生制造系统仿真过程动态扰动响应方法[J]. 计算机集成制造系统202329(6): 1996-2005.
  MENG Q, HU T L, MA S H. Cloud-fog-edge collaboration digital twin manufacturing system simulation process and dynamic disturbance response method[J]. Computer Integrated manufacturing systems202329(6): 1996-2005 (in Chinese).
163 QI Q L, TAO F. Digital twin and big data towards smart manufacturing and Industry 4.0: 360 degree comparison[J]. IEEE Access20186: 3585-3593.
164 ZHANG C, ZHOU G H, LI J J, et al. A multi-access edge computing enabled framework for the construction of a knowledge-sharing intelligent machine tool swarm in Industry 4.0[J]. Journal of Manufacturing Systems202366: 56-70.
165 LIU Z F, CHEN W, ZHANG C X, et al. Intelligent scheduling of a feature-process-machine tool supernetwork based on digital twin workshop[J]. Journal of Manufacturing Systems202158: 157-167.
166 MO F, REHMAN H U, MONETTI F M, et al. A framework for manufacturing system reconfiguration and optimization utilizing digital twins and modular artificial intelligence[J]. Robotics and Computer-Integrated Manufacturing202382: 102524.
167 REN Z J, WAN J F. Strengthening digital twin applications based on machine learning for complex equipment[C]∥2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). 2021: 609-614.
168 TAO F, ZHANG M, NEE A Y C. Chapter 11 - Digital twin and virtual reality and augmented reality/mixed reality[M]. TAO F, ZHANG M, NEE A Y C, editors. Digital twin driven smart manufacturing. Elsevier: Academic Press, 2019: 219-241.
169 ZHU Z X, LIU C, XU X. Visualisation of the digital twin data in manufacturing by using augmented reality[J]. Procedia CIRP201981: 898-903.
170 TAO F, ZHANG M, NEE A Y C. Chapter 12 - Digital twin, cyber-physical system, and internet of things[M]. TAO F, ZHANG M, NEE A Y C, editors. Digital twin driven smart manufacturing. Elsevier: Academic Press; 2019: 243-256.
171 MERTES J, GLATT M, SCHELLENBERGER C, et al. Development of a 5G-enabled digital twin of a machine tool[J]. Procedia CIRP2022107: 173-178.
172 LIU S M, LU Y Q, LI J, et al. A blockchain-based interactive approach between digital twin-based manufacturing systems[J]. Computers & Industrial Engineering2023175: 108827.
173 张超, 周光辉, 李晶晶, 等. 新一代信息技术赋能的数字孪生制造单元系统关键技术及应用研究[J]. 机械工程学报202258(16): 329-343.
  ZAHNG C, ZHOU G H, LI J J, et al. Research on key technologies and application of new IT-driven digital twin manufacturing cell system[J]. Journal of Mechanical Engineering202258(16): 329-343 (in Chinese).
174 FULLER A, FAN Z, DAY C, et al. Digital twin: enabling technologies, challenges and open research[J]. IEEE Access20208: 108952-108971.
175 MIHAI S, YAQOOB M, HUNG D V, et al. Digital twins: a survey on enabling technologies, challenges, trends and future prospects[J]. IEEE Communications Surveys & Tutorials202224(4): 2255-2291.
176 MOHSEN A, BILGE G C, twin Digital : benefits, use cases, challenges, and opportunities[J]. Decision Analytics Journal20236: 100165.
177 WU J, YANG Y, CENG X, et al. The development of digital twin technology review[C]∥2020 Chinese Automation Congress (CAC). 2020: 4901-4906.
文章导航

/