沉头孔螺旋铣削加工有限元仿真分析
收稿日期: 2023-03-13
修回日期: 2023-04-03
录用日期: 2023-05-25
网络出版日期: 2023-09-06
基金资助
兴辽英才计划(XLYC2001004);中央高校基本科研业务费(DUT22LAB501)
Finite element simulation analysis in helical milling of countersunk hole
Received date: 2023-03-13
Revised date: 2023-04-03
Accepted date: 2023-05-25
Online published: 2023-09-06
Supported by
Xingliao Talent Program of Liaoning Province(XLYC2001004);The Fundamental Research Funds for the Central Universities(DUT22LAB501)
盛方怡 , 杨国林 , 孟凡通 , 董志刚 , 康仁科 . 沉头孔螺旋铣削加工有限元仿真分析[J]. 航空学报, 2024 , 45(1) : 428690 -428690 . DOI: 10.7527/S1000-6893.2023.28690
A large number of countersunk holes need to be machined during the assembly of aerospace components. The widespread use of difficult-to-cut materials has brought new challenges to the hole-making technology. As a new hole-making technology of assembly, helical milling can be used to machine countersunk holes with special tools, and the machining quality can be improved by using the characteristics of helical milling principle. Firstly, the kinematics analysis of helical milling in machining countersunk holes was carried out. Next, finite element simulation was used to simulate the helical milling process of countersunk holes in titanium alloy materials. Then, the accuracy of the finite element simulation was verified through the cutting force and chip morphology in helical milling test. Finally, the established simulation model was used to analyze the influence of dimple depth and process parameters on the cutting force acting on the cutting tool.
1 | 常仕军, 肖红, 侯兆珂, 等. 飞机复合材料结构装配连接技术[J]. 航空制造技术, 2010, 53(6): 96-99. |
CHANG S J, XIAO H, HOU Z K, et al. Assembly and fastening technology for composites structure in aircraft[J]. Aeronautical Manufacturing Technology, 2010, 53(6): 96-99 (in Chinese). | |
2 | 康仁科, 杨国林, 董志刚, 等. 飞机装配中的先进制孔技术与装备[J]. 航空制造技术, 2016, 59(10): 16-24. |
KANG R K, YANG G L, DONG Z G, et al. Advanced hold machining technology and equipment for aircraft assembly[J]. Aeronautical Manufacturing Technology, 2016, 59(10): 16-24 (in Chinese). | |
3 | 秦旭达, 周猛, 李士鹏, 等. 螺旋铣孔-锪窝-倒圆角一体刀具: CN106964826B [P]. 2019-06-18. |
QIN X D, ZHOU M, LI S P, et al. Helical milling-countersinking-rounded corner integrated tool: China, CN106964826B[P]. 2019-06-18 (in Chinese). | |
4 | 董志刚, 高宇, 康仁科, 等. 钛合金螺旋铣孔孔径偏差研究[J]. 航空学报, 2021, 42(3): 423841. |
DONG Z G, GAO Y, KANG R K, et al. Hole diameter deviation in helical milling of titanium alloy[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 423841 (in Chinese). | |
5 | VOSS R, HENERICHS M, KUSTER F. Comparison of conventional drilling and orbital drilling in machining carbon fibre reinforced plastics (CFRP)[J]. CIRP Annals, 2016, 65(1): 137-140. |
6 | BRINKSMEIER E, FANGMANN S, RENTSCH R. Drilling of composites and resulting surface integrity[J]. CIRP Annals, 2011, 60(1): 57-60. |
7 | SADEK A, MESHREKI M, ATTIA M H. Characterization and optimization of helical milling of woven carbon fiber reinforced epoxy laminates [J]. Original Research Article CIRP Annals-Manufacturing Technology, 2012, 61(1): 123-126. |
8 | 杨国林. 面向航空航天构件装配的螺旋铣孔工艺及装备[D]. 大连: 大连理工大学, 2021: 7-19. |
YANG G L. Technology and equipment of helical milling for aerospace components assembly[D]. Dalian: Dalian University of Technology, 2021: 7-19 (in Chinese). | |
9 | WANG G, MELLY S K, LI N, et al. Research on milling strategies to reduce delamination damage during machining of holes in CFRP/Ti stack[J]. Composite Structures, 2018, 200: 679-688. |
10 | NI W. Orbital drilling of aerospace materials[J]. SAE Transactions, 2007, 116: 827-835. |
11 | 杨国林, 董志刚, 康仁科, 等. 螺旋铣孔技术研究进展[J]. 航空学报, 2020, 41(7): 623311. |
YANG G L, DONG Z G, KANG R K, et al. Research progress of helical milling technology[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 623311 (in Chinese). | |
12 | 周兰. 航空难加工材料螺旋铣制孔专用刀具设计及其质量研究[D]. 杭州: 浙江大学, 2017: 10-12. |
ZHOU L. Dedicated cutting tool design and research on hole quality for orbital drilling of aeronautical difficult-to-cut materials[D]. Hangzhou: Zhejiang University, 2017: 10-12 (in Chinese). | |
13 | JI C, LI Y, QIN X, et al. 3D FEM simulation of helical milling hole process for titanium alloy Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(9-12): 1733-1742. |
14 | 李永行. 钛合金螺旋铣孔过程仿真与试验研究[D]. 天津: 天津大学, 2014: 21-33. |
LI Y H. Finite element modeling and experimental investigation on helical milling hole-making process of titanium alloy[D]. Tianjin: Tianjin University, 2014: 21-33 (in Chinese). | |
15 | 成群林, 柯映林, 董辉跃. 航空铝合金铣削加工中切削力的数值模拟研究[J]. 航空学报,2006, 7(4): 724-727. |
CHENG Q L, KE Y L, DONG H Y. Numerical simulation study on milling force for aerospace aluminum alloy[J]. Acta Aeronautica et Astronautica Sinica, 2006, 7(4): 724-727 (in Chinese). | |
16 | 高凯晔. 基于加工仿真的钛合金Ti6Al4V螺旋铣孔专用刀具优化设计[D]. 杭州: 浙江大学, 2015: 23-39. |
GAO K Y. Design and optimization of specialized tool for helical milling Ti6Al4V based on processing simulation[D]. Hangzhou: Zhejiang University, 2015: 23-39 (in Chinese). | |
17 | OMAR O, EL-WARDDANY T, NG E, et al. An improved cutting force and surface topography prediction model in end milling [J]. International Journal of Machine Tools and Manufacture, 2006, 47(7): 1263-1275. |
18 | ?ZEL T, ALTAN T. Process simulation using finite element method-prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling[J]. International Journal of Machine Tools and Manufacture, 2000, 40(5): 713-738. |
19 | FANG N, JAWAHIR I S, OXLEY P L B. A universal slip-line model with non-unique solutions for machining with curled chip formation and a restricted contact tool[J]. International Journal of Mechanical Sciences, 2001, 43(2): 557-580. |
20 | JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48. |
21 | SONG X H, LI A H, LV M H, et al. Finite element simulation study on pre-stress multi-step cutting of Ti-6Al-4V titanium alloy[J]. The International Journal of Advanced Manufacturing Technology. 2019, 104(5): 2761-2771. |
/
〈 |
|
〉 |