电子电气工程与控制

基于MatchNet和多点匹配约束的可见光-SAR图像匹配

  • 叶熠彬 ,
  • 滕锡超 ,
  • 于起峰 ,
  • 李璋
展开
  • 国防科技大学 空天科学学院,长沙 410073
.E-mail: zhangli_nudt@163.com

收稿日期: 2023-06-13

  修回日期: 2023-07-17

  录用日期: 2023-08-11

  网络出版日期: 2023-09-01

基金资助

国家自然科学基金(61801491)

Optical⁃SAR image matching based on MatchNet and multi⁃point matching constraint

  • Yibin YE ,
  • Xichao TENG ,
  • Qifeng YU ,
  • Zhang LI
Expand
  • College of Aerospace Science and Engineering,National University of Defence Technology,Changsha 410073,China

Received date: 2023-06-13

  Revised date: 2023-07-17

  Accepted date: 2023-08-11

  Online published: 2023-09-01

Supported by

National Natural Science Foundation of China(61801491)

摘要

基于可见光和SAR成像的异源图像匹配是实现复杂场景下飞行器视觉导航的关键。由于成像机理的差异,可见光-SAR图像匹配需要面对成像几何特性差异、非线性辐射失真以及噪声干扰等挑战。近年来,基于深度学习的图像匹配方法表现出比传统方法更优的场景适应性,但现有深度学习方法仍未完全解决上述几个挑战,还无法完全满足视觉导航中的高精度匹配需求。基于经典的MatchNet匹配框架,针对其单个模板匹配精度不足的问题,提出一种多点匹配约束的匹配方法(MMC-MatchNet)。方法主要分为2步:第1步生成子模板并利用MatchNet进行匹配,第2步基于多点几何约束剔除误匹配子模板并优化匹配结果。该方法在保持MatchNet输入尺寸不变的同时提升了网络对多尺寸可见光-SAR图像的匹配精度。此外,还提出了一种多级数据集构建方法来训练MatchNet。与随机采样构建负样本的方式相比,所提方法更关注于匹配任务中的困难样本,是一种适用于图像匹配的数据增强手段。对MMC-MatchNet在2种可见光-SAR图像匹配数据上进行了测试,取得了比NCC、NMI、HOPC以及单模板MatchNet方法更好的匹配结果,在与HOPC匹配精度相似的前提下,MMC-MatchNet可大幅提高匹配正确率(CMR)。同时,多点匹配约束和多级数据构建方法还适用于其他基于Patch的图像匹配模型。

本文引用格式

叶熠彬 , 滕锡超 , 于起峰 , 李璋 . 基于MatchNet和多点匹配约束的可见光-SAR图像匹配[J]. 航空学报, 2024 , 45(10) : 329162 -329162 . DOI: 10.7527/S1000-6893.2023.29162

Abstract

Multimodal image matching between optical and SAR images is critical for visual navigation of the aircraft flying over complex areas. Due to different imaging mechanisms, accurate optical-SAR image matching faces several challenges, such as imaging geometry differences between optical and SAR, nonlinear radiation distortion of SAR, and noise interference. Although deep learning-based image matching methods have shown better adaptability than traditional methods, they still cannot fully solve the above-mentioned challenges and their matching accuracy may be not enough for visual navigation tasks. This paper proposes a new image matching method called Multi-point Matching Constraint MatchNet (MMC-MatchNet) based on the typical MatchNet framework, so as to improve the matching accuracy of the single template matching using MatchNet. The method consists of two main steps: sub-templates sampling and matching using MatchNet, and mismatched sub-templates removal based on multi-point geometric constraint. The original input image size of the MatchNet is maintained, while the matching accuracy for optical-SAR image matching is improved. This paper also proposes a multi-level training dataset generation method to train the MMC-MatchNet. Compared to the random sampling method, our method focuses on the difficult samples in image matching, and can be seen as a special data augmentation method for image matching. MMC-MatchNet is tested on two multi-modal image matching datasets, outperforming NCC, NMI, HOPC and the single-template MatchNet. With similar matching accuracy to that of HOPC, MMC-MatchNet can improve the Correctly Matching Rate (CMR). The method based on multi-point matching constraint and multi-level dataset generation can be easily extend to other patch-based image matching models.

参考文献

1 刘中杰, 曹云峰, 庄丽葵, 等. 基于控制线方法的机载SAR和可见光图像匹配应用研究[J]. 航空学报201334(9): 2194-2201.
  LIU Z J, CAO Y F, ZHUANG L K, et al. Applied research on airborne SAR and optical image registration based on control line method[J]. Acta Aeronautica et Astronautica Sinica201334(9): 2194-2201 (in Chinese).
2 赵耀, 熊智, 田世伟, 等. 基于SAR图像匹配结果可信度评价的INS/SAR自适应Kalman滤波算法[J]. 航空学报201940(8): 322850.
  ZHAO Y, XIONG Z, TIAN S W, et al. INS/SAR adaptive Kalman filtering algorithm based on credibility evaluation of SAR image matching results[J]. Acta Aeronautica et Astronautica Sinica201940(8): 322850 (in Chinese).
3 LU J Z, HU M Q, DONG J, et al. A novel dense descriptor based on structure tensor voting for multi-modal image matching[J]. Chinese Journal of Aeronautics202033(9): 2408-2419.
4 JIANG X Y, MA J Y, XIAO G B, et al. A review of multimodal image matching: Methods and applications[J]. Information Fusion202173(C): 22-71.
5 LI Q, FU B H, DONG Y F. Registration of radar and optical satellite images using multiscale filter technique and information measure[M]∥ IMPERATORE P, RICCIO D, eds. Geoscience and Remote Sensing New Achievements. London: InTech, 2010.
6 HONG T D, SCHOWENGERDT R A. A robust technique for precise registration of radar and optical satellite images[J]. Photogrammetric Engineering & Remote Sensing200571(5): 585-593.
7 PAUL S, PATI U C. A comprehensive review on remote sensing image registration[J]. International Journal of Remote Sensing202142(14): 5400-5436.
8 ZHAO F, HUANG Q M, WEN G. Image matching by normalized cross-correlation[C]∥ 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings. Piscataway: IEEE Press, 2006: Ⅱ.
9 WELLS W M, VIOLA P, ATSUMI H, et al. Multi-modal volume registration by maximization of mutual information[J]. Medical Image Analysis19961(1): 35-51.
10 YE Y X, SHAN J, BRUZZONE L, et al. Robust registration of multimodal remote sensing images based on structural similarity[J]. IEEE Transactions on Geoscience and Remote Sensing201755(5): 2941-2958.
11 SURI S, REINARTZ P. Mutual-information-based registration of TerraSAR-X and ikonos imagery in urban areas[J]. IEEE Transactions on Geoscience and Remote Sensing201048(2): 939-949.
12 YE Y X, SHEN L, HAO M, et al. Robust optical-to-SAR image matching based on shape properties[J]. IEEE Geoscience and Remote Sensing Letters201714(4): 564-568.
13 FAN B, HUO C L, PAN C H, et al. Registration of optical and SAR satellite images by exploring the spatial relationship of the improved SIFT[J]. IEEE Geoscience and Remote Sensing Letters201310(4): 657-661.
14 HUANG L, LI Z. Feature-based image registration using the shape context[J]. International Journal of Remote Sensing201031(8): 2169-2177.
15 XIANG Y M, WANG F, YOU H J. OS-SIFT: A robust SIFT-like algorithm for high-resolution optical-to-SAR image registration in suburban areas[J]. IEEE Transactions on Geoscience and Remote Sensing201856(6): 3078-3090.
16 WANG Y G, YU X D, ZHANG Y, et al. An adaptive SAR and optical images registration approach based on SOI-SIFT[C]∥ IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 2582-2585.
17 ZHANG X T, WANG Y H, LIU H W. Robust optical and SAR image registration based on OS-SIFT and cascaded sample consensus[J]. IEEE Geoscience and Remote Sensing Letters202119: 4011605.
18 FAN J W, YE Y X, LIU G C, et al. Phase congruency order-based local structural feature for SAR and optical image matching[J]. IEEE Geoscience and Remote Sensing Letters202219: 4507105.
19 RAGURAM R, CHUM O, POLLEFEYS M, et al. USAC: A universal framework for random sample consensus[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201335(8): 2022-2038.
20 ZHAO M, ZHANG G X, DING M. Heterogeneous self-supervised interest point matching for multi-modal remote sensing image registration[J]. International Journal of Remote Sensing202243(3): 915-931.
21 XIANG D L, XIE Y Z, CHENG J D, et al. Optical and SAR image registration based on feature decoupling network[J]. IEEE Transactions on Geoscience and Remote Sensing185860: 5235913.
22 LIPMAN Y, YAGEV S, PORANNE R, et al. Feature matching with bounded distortion[J]. ACM Transactions on Graphics201433(3): 26.
23 MA J Y, ZHAO J, JIANG J J, et al. Locality preserving matching[J]. International Journal of Computer Vision2019127(5): 512-531.
24 BIAN J W, LIN W Y, MATSUSHITA Y, et al. GMS: Grid-based motion statistics for fast, ultra-robust feature correspondence[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 2828-2837.
25 VERDIE Y, YI K M, FUA P, et al. TILDE: A temporally invariant learned DEtector[C]∥ 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 5279-5288.
26 ZHANG X, YU F X, KARAMAN S, et al. Learning discriminative and transformation covariant local feature detectors[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 4923-4931.
27 LUO Z X, SHEN T W, ZHOU L, et al. ContextDesc: Local descriptor augmentation with cross-modality context[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 2522-2531.
28 YI K M, TRULLS E, LEPETIT V, et al. LIFT: Learned invariant feature transform[C]∥ European Conference on Computer Vision. Cham: Springer, 2016: 467-483.
29 WANG J, ZHOU F, WEN S L, et al. Deep metric learning with angular loss[C]∥ 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2612-2620.
30 HAN X F, LEUNG T, JIA Y Q, et al. MatchNet: Unifying feature and metric learning for patch-based matching[C]∥ 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 3279-3286.
31 ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks[C]∥ 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 4353-4361.
32 MA W P, ZHANG J, WU Y, et al. A novel two-step registration method for remote sensing images based on deep and local features[J]. IEEE Transactions on Geoscience and Remote Sensing201957(7): 4834-4843.
33 HUGHES L H, SCHMITT M, MOU L C, et al. Identifying corresponding patches in SAR and optical images with a pseudo-siamese CNN[J]. IEEE Geoscience and Remote Sensing Letters201815(5): 784-788.
34 HOFFMANN S, BRUST C A, SHADAYDEH M, et al. Registration of high resolution SAR and optical satellite imagery using fully convolutional networks[C]∥ IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2019: 5152-5155.
35 HUGHES L H, MARCOS D, LOBRY S, et al. A deep learning framework for matching of SAR and optical imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing2020169: 166-179.
36 QUAN D, WANG S, LIANG X F, et al. Deep generative matching network for optical and SAR image registration[C]∥ IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2018: 6215-6218.
37 MERKLE N, AUER S, MüLLER R, et al. Exploring the potential of conditional adversarial networks for optical and SAR image matching[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing201811(6): 1811-1820.
38 BALNTAS V, RIBA E, PONSA D, et al. Learning local feature descriptors with triplets and shallow convolutional neural networks[C]∥ Proceedings of the British Machine Vision Conference 2016, 2016.
39 MISHCHUK A, MISHKIN D, RADENOVI? F, et al. Working hard to know your neighbor’s margins: Local descriptor learning loss[C]∥ Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 4829–4840.
40 TIAN Y R, FAN B, WU F C. L2-net: Deep learning of discriminative patch descriptor in euclidean space[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 6128-6136.
41 HE H Q, CHEN M, CHEN T, et al. Matching of remote sensing images with complex background variations via Siamese convolutional neural network[J]. Remote Sensing201810(3): 355.
42 HE H Q, CHEN M, CHEN T, et al. Learning to match multitemporal optical satellite images using multi-support-patches Siamese networks[J]. Remote Sensing Letters201910(6): 516-525.
43 LIAO Y, DI Y D, ZHOU H, et al. Feature matching and position matching between optical and SAR with local deep feature descriptor[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202115: 448-462.
44 QUAN D, WEI H Y, WANG S, et al. Self-distillation feature learning network for optical and SAR image registration[J]. IEEE Transactions on Geoscience and Remote Sensing202260: 4706718.
45 ZHU R J, YU D W, JI S P, et al. Matching RGB and infrared remote sensing images with densely-connected convolutional neural networks[J]. Remote Sensing201911(23): 2836.
46 MA J Y, JIANG X Y, FAN A X, et al. Image matching from handcrafted to deep features: A survey[J]. International Journal of Computer Vision2021129(1): 23-79.
47 ZHANG H, LEI L, NI W P, et al. Explore better network framework for high-resolution optical and SAR image matching[J]. IEEE Transactions on Geoscience and Remote Sensing202160: 4704418.
48 YE Y X, TANG T F, ZHU B, et al. A multiscale framework with unsupervised learning for remote sensing image registration[J]. IEEE Transactions on Geoscience and Remote Sensing202260: 5622215.
49 FANG Y Y, HU J, DU C, et al. SAR-optical image matching by integrating Siamese U-net with FFT correlation[J]. IEEE Geoscience and Remote Sensing Letters202119: 4016505.
50 LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]∥ 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2999-3007.
51 ZHENG L X, XIAO G B, SHI Z W, et al. MSA-net: Establishing reliable correspondences by multiscale attention network[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society202231: 4598-4608.
文章导航

/