材料工程与机械制造

激光熔覆修复GH4169合金各向异性拉伸性能

  • 樊哲铭 ,
  • 杨未柱 ,
  • 曾延 ,
  • 赵哲南 ,
  • 李磊
展开
  • 1.西北工业大学 力学与土木建筑学院,西安 710072
    2.西北工业大学深圳研究院,深圳 518063

收稿日期: 2023-06-05

  修回日期: 2023-07-07

  录用日期: 2023-08-22

  网络出版日期: 2023-09-01

基金资助

广东省基础与应用基础研究基金(2023A1515012360);航空科学基金(2020Z039053002);国家科技重大专项(J2019-IV-)

Anisotropic tensile properties of GH4169 alloy repaired by laser direct energy deposition

  • Zheming FAN ,
  • Weizhu YANG ,
  • Yan ZENG ,
  • Zhenan ZHAO ,
  • Lei LI
Expand
  • 1.School of Mechanics,Civil Engineering and Architecture,Northwestern Polytechnical University,Xi’an  710072,China
    2.Research and Development Institute of Northwestern Polytechnical University in Shenzhen,Shenzhen  518063,China

Received date: 2023-06-05

  Revised date: 2023-07-07

  Accepted date: 2023-08-22

  Online published: 2023-09-01

Supported by

Guangdong Basic and Applied Basic Research Foundation(2023A1515012360);Aeronautical Science Foundation of China(2020Z039053002);National Science and Technology Major Project(J2019-IV-0019-0087)

摘要

激光熔覆修复GH4169合金的拉伸性能具备各向异性,拉伸性能与受载方向和修复界面之间的夹角(界面角度)显著相关,研究修复后合金的拉伸各向异性可为GH4169合金构件的高性能修复奠定基础。基于数字图像相关(DIC)技术开展了不同界面角度下的修复后合金拉伸试验,结合光学显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDS)等手段进行了界面区域微观组织及断口形貌观测分析,对激光熔覆修复GH4169合金各向异性拉伸力学性能开展了研究。结果表明修复后合金的拉伸性能与拉伸载荷方向、枝晶生长方向的夹角呈负相关;拉伸试样的断裂主要是由Laves/γ相界面在拉伸载荷下分离引发裂纹成核和扩展造成的。当枝晶取向与拉伸载荷的夹角较小时枝晶间较大尺寸的不规则Laves相破碎成小颗粒并随基体γ相一同移动,断裂后韧窝较深,抗拉强度和屈服强度较高;当夹角较大时枝晶间Laves/γ相界面剥离导致裂纹形核,而后快速扩展,断口呈大量阶梯状的枝晶沿晶断裂形貌,拉伸性能较差。研究阐明了不同界面角度对修复后合金拉伸性能的影响机理,可为激光熔覆修复GH4169高温合金构件拉伸性能的综合评估提供基础。

本文引用格式

樊哲铭 , 杨未柱 , 曾延 , 赵哲南 , 李磊 . 激光熔覆修复GH4169合金各向异性拉伸性能[J]. 航空学报, 2024 , 45(8) : 429129 -429129 . DOI: 10.7527/S1000-6893.2023.29129

Abstract

The tensile properties of GH4169 superalloy repaired by direct energy deposition are anisotropic, and there is a significant correlation between the tensile properties and the angle between the stress direction and the repair interface (interface angle). Studying the tensile anisotropy of the repaired alloy can lay the foundation for high-performance repair of GH4169 superalloy components. Based on Digital Image Correlation (DIC) technology, this study conducts tensile tests and mechanical behavior analysis of the repaired alloy at different interface angles, and combines Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and other methods to observe the microstructure and fracture morphology of the interface area. The anisotropic tensile mechanical properties of GH4169 alloy repaired by direct energy deposition were studied. The results indicate that the tensile properties of the repaired alloy exhibit a negative correlation with the angle between the tensile direction and dendrite growth direction; the fracture of tensile specimens is mainly caused by the separation of Laves/γ phase interface under tensile load, leading to crack nucleation and propagation. When the angle between dendrite orientation and tensile load is small, the larger irregular Laves phase between the dendrites breaks into small particles and moves along with the matrix γ phase, after fracture the dimples are deeper and the tensile strength and yield strength are higher; when the included angle is large, the delamination of Laves/γ phase interface between dendrites leads to crack nucleation, which then rapidly expands, and the fracture surface presents a large number of stepped dendritic intergranular fracture morphology, resulting in poor tensile performance. This study elucidates the mechanism of the influence of different stretching directions on the tensile properties of the repaired alloy, providing a basis for the comprehensive evaluation of the tensile properties of GH4169 superalloy components repaired by direct energy deposition.

参考文献

1 AMATO K, GAYTAN S, MURR L, et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting[J]. Acta Materialia201260(5): 2229-2239.
2 ZHANG Y, LI Z G, NIE P L, et al. Effect of ultrarapid cooling on microstructure of laser cladding IN718 coating[J]. Surface Engineering201329: 414-418.
3 FISK M, ANDERSSON J, DU RIETZ R, et al. Precipitate evolution in the early stages of ageing in Inconel 718 investigated using small-angle X-ray scattering[J]. Materials Science & Engineering A2014612: 202-207.
4 李涤尘, 鲁中良, 田小永, 等. 增材制造: 面向航空航天制造的变革性技术[J]. 航空学报202243(4): 15-31.
  LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica202243(4): 15-31 (in Chinese).
5 张佩宇, 周鑫, 李应红. 单晶涡轮叶片高能束修复研究进展[J]. 航空学报202243(4): 147-171.
  ZHANG P Y, ZHOU X, LI Y H. Progress on high energy beam repair of single crystal turbine blades[J]. Acta Aeronautica et Astronautica Sinica202243(4): 147-171 (in Chinese).
6 SAFDAR S, PINKERTON A J, LI L, et al. An anisotropic enhanced thermal conductivity approach for modelling laser melt pools for Ni-base super alloys[J]. Applied Mathematical Modelling201337(3): 1187-1195.
7 成诚. 激光再制造镍基高温合金工艺及其高温拉伸性能的研究[D]. 南京: 南京航空航天大学, 2016: 7-8.
  CHENG C. Research on laser remanufacturing process of nickel-based super-alloy and their high-temperature tensile properties[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 7-8 (in Chinese).
8 CHEN Z, CHEN S G, WEI Z Y, et al. Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting[J]. Progress in Natural Science: Materials International201828(4): 496-504.
9 ZENG Y, LI L, HUANG W, et al. Effect of thermal cycles on laser direct energy deposition repair performance of nickel-based superalloy: Microstructure and tensile properties[J]. International Journal of Mechanical Sciences2022221: 107173.
10 FERRERI N C, GHORBANPOUR S, BHOWMIK S, et al. Effects of build orientation and heat treatment on the evolution of microstructure and mechanical properties of alloy Mar-M-509 fabricated via laser powder bed fusion[J]. International Journal of Plasticity2019121: 116-133.
11 徐翔宇, 曹阳, 王辉, 等. 激光熔覆修复叶片的过渡区力学性能试验研究[J]. 现代制造工程2021(9): 118-123.
  XU X Y, CAO Y, WANG H, et al. Experimental research on mechanical properties of the blade transition zone by laser cladding repair process[J]. Modern Manufacturing Engineering2021(9): 118-123 (in Chinese).
12 WANG K, BAO R, LIU D, et al. Plastic anisotropy of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy[J]. Materials Science and Engineering: A2019746: 276-289.
13 ZHAO Z N, YANG W Z, LI L, et al. Synchronously Enhanced strength-ductility of L-DEDed GH4169 with varying energy input[J]. International Journal of Mechanical Sciences2023253: 108402.
14 ZHAO Z N, LI L, YANG W Z, et al. A comprehensive study of the anisotropic tensile properties of laser additive manufactured Ni-based superalloy after heat treatment[J]. International Journal of Plasticity2022148: 103-147.
15 ZHONG C L, GASSER A, KITTEL J, et al. Microstructures and tensile properties of Inconel 718 formed by high deposition-rate laser metal deposition[J]. Journal of Laser Applications201628(2): 022010.
16 SUI S, TAN H, CHEN J, et al. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing[J]. Acta Materialia2019164: 413-427.
17 张杰, 张群莉, 李栋, 等. δ时效处理对激光增材修复Inconel 718合金组织与性能的影响[J]. 中国激光202047(1): 0102001.
  ZHANG J, ZHANG Q L, LI D, et al. Effect of δ aging treatment on microstructure and tensile properties of repaired inconel 718 alloy using laser additive manufacturing[J]. Chinese Journal of Lasers202047(1): 0102001 (in Chinese).
18 卞宏友, 赵翔鹏, 李英, 等. 激光沉积修复GH4169合金试验研究[J]. 红外与激光工程201645(2): 0206006.
  BIAN H Y, ZHAO X P, LI Y, et al. Experimental study on laser deposition repair GH4169 alloy component[J]. Infrared and Laser Engineering201645(2): 0206006 (in Chinese).
19 明宪良, 陈静, 谭华, 等. 激光修复GH4169高温合金的持久断裂机制研究[J]. 中国激光201542(4): 0403005.
  MING X L, CHEN J, TAN H, et al. Research on persistent fracture mechanism of laser forming repaired GH4169 superalloy[J]. Chinese Journal of Lasers201542(4): 0403005 (in Chinese).
20 张少平, 隋尚, 明宪良, 等. 激光修复GH4169高温合金的组织与力学性能[J]. 应用激光201535(3): 277-281.
  ZHANG S P, SUI S, MING X L, et al. Microstructure and mechanical properties of laser repaired GH4169 superalloy[J]. Applied Laser201535(3): 277-281 (in Chinese).
21 RADHAKRISHNAN B, THOMPSON R G. Solidification of the nickel-base superalloy 718: A phase diagram approach[J]. Metallurgical Transactions A198920(12): 2866-2868.
22 TAKATA N, ARMAKI H G, TERADA Y, et al. Plastic deformation of the C14 Laves phase (Fe, Ni)2Nb[J]. Scripta Materialia201368(8): 615-618.
23 SUI S, CHEN J, FAN E X, et al. The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718[J]. Materials Science and Engineering: A2017695: 6-13.
文章导航

/