流体力学与飞行力学

基于PCA降维的气动外形参数化方法

  • 余婧 ,
  • 蒋安林 ,
  • 刘亮 ,
  • 吴晓军 ,
  • 桂业伟 ,
  • 刘深深
展开
  • 中国空气动力研究与发展中心 计算空气动力研究所,绵阳 621000
.E-mail: lsssml1990@126.com

收稿日期: 2023-06-05

  修回日期: 2023-08-03

  录用日期: 2023-08-25

  网络出版日期: 2023-09-01

基金资助

智强基金;国家重点研发计划(2019YFA0405202)

PCA aerodynamic geometry parametrization method

  • Jing YU ,
  • Anlin JIANG ,
  • Liang LIU ,
  • Xiaojun WU ,
  • Yewei GUI ,
  • Shenshen LIU
Expand
  • Computational Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
E-mail: lsssml1990@126.com

Received date: 2023-06-05

  Revised date: 2023-08-03

  Accepted date: 2023-08-25

  Online published: 2023-09-01

Supported by

Zhiqiang Foundation;National Key Research and Development Program of China(2019YFA0405202)

摘要

几何参数化建模是气动布局设计的关键技术之一,简洁、高效、准确的几何表征对于提高飞行器设计效率和质量有着至关重要的作用。基于主成分分析(PCA)的特征提取降维,可以在满足几何表征精度的条件下,进一步降低现有参数化方法的维度,更好地服务于气动布局设计。本文介绍了基于PCA的翼型参数建模方法,分析了采样空间设计、样本数量、采样参数、几何重构方式等各个因素对PCA建模过程中降维能力、基模态特性以及几何表征能力的影响。通过CFD仿真分析,进一步探究PCA建模方法在气动性能表征方面的能力。仿真分析指出:基于PCA的翼型参数化方法,可以在满足几何外形表征精度的条件下降低现有方法参数维度,且其设计参数与几何特性有对应关系,利于在布局设计中加入工程经验;基于同一类采样方式的PCA建模,其模态特性、降维能力和几何外形拟合能力受采样空间、样本数量的影响很小,但对采样方法的参数配置较为敏感;本文所研究的建模方法,可在保证几何表征精度的同时满足气动力表征精度,其在气动布局设计优化中,具有一定的指导意义。

本文引用格式

余婧 , 蒋安林 , 刘亮 , 吴晓军 , 桂业伟 , 刘深深 . 基于PCA降维的气动外形参数化方法[J]. 航空学报, 2024 , 45(10) : 129125 -129125 . DOI: 10.7527/S1000-6893.2023.29125

Abstract

Geometry parametrization plays a significant role in Aerodynamic Shape Optimization (ASO). A succinct, accurate, and efficient geometric presentation method can effectively improve the optimization efficiency and the design results. Principal Component Analysis (PCA) is a common way to extract data features and reduce data dimension. In this paper, an airfoil geometry parameterization method based on the PCA is firstly introduced. Then, the influences of sampling space, sample number, sampling method and geometric reconstruction method on PCA dimension reduction ability, base mode characteristics and geometric presentation ability are analyzed. Furthermore, the presentation ability of the PCA method on aerodynamic characteristics is also studied based on computation fluid dynamics. Simulation results show that: the PCA method could effectively describe the airfoil geometry shape with preferable accuracy and relatively few, physically meaningful parameters; based on a specific sampling method, the PCA mode, the dimension reduction ability and the geometric accuracy are little affected by the sampling space and the sample number, though they are sensitive to the parameters of the sampling method; the PCA method described in this paper could not only accurately describe the geometry shape, but also ensure the accuracy of the aerodynamic forces to a certain degree, which has certain guiding significance in ASO applications.

参考文献

1 韩忠华, 高正红, 宋文萍, 等. 翼型研究的历史、现状与未来发展[J]. 空气动力学学报202139(6):1-36.
  HAN Z H, GAO Z H, SONG W P, et al. On airfoil research and development: History, current status, and future directions[J]. Acta Aerodynamica Sinica202139(6): 1-36 (in Chinese).
2 SAMAREH J A. Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization[J]. AIAA Journal200139(5): 877-884.
3 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报201233(4): 625-633.
  GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica201233(4): 625-633 (in Chinese).
4 王丹, 白俊强, 黄江涛. FFD方法在气动优化设计中的应用[J]. 中国科学: 物理学 力学 天文学201444(3): 267-277.
  WANG D, BAI J Q, HUANG J T. The application of FFD method in aerodynamic optimization design[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 201444(3): 267-277 (in Chinese).
5 陈颂, 白俊强, 孙智伟, 等. 基于DFFD技术的翼型气动优化设计[J]. 航空学报201435(3): 695-705.
  CHEN S, BAI J Q, SUN Z W, et al. Aerodynamic optimization design of airfoil using DFFD technique[J]. Acta Aeronautica et Astronautica Sinica201435(3): 695-705 (in Chinese).
6 KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft200845(1): 142-158.
7 刘传振, 段焰辉, 蔡晋生. 使用类别形状函数的多目标气动外形优化设计[J]. 气体物理20161(2): 37-46.
  LIU C Z, DUAN Y H, CAI J S. Multi-objective aerodynamic shape optimization based on class and shape transformation[J]. Physics of Gases20161(2): 37-46 (in Chinese).
8 KULFAN B, BUSSOLETTI J. “Fundamental” parameteric geometry representations for aircraft component shapes: AIAA-2006-6948[R]. Reston: AIAA, 2006.
9 张德虎, 席胜, 田鼎. 典型翼型参数化方法的翼型外形控制能力评估[J]. 航空工程进展20145(3): 281-288, 295.
  ZHANG D H, XI S, TIAN D. Geometry control ability evaluation of classical airfoil parametric methods[J]. Advances in Aeronautical Science and Engineering20145(3): 281-288, 295 (in Chinese).
10 粟华, 龚春林, 谷良贤. 基于三维CST建模方法的两层气动外形优化策略[J]. 固体火箭技术201437(1): 1-6, 22.
  SU H, GONG C L, GU L X. Two-level aerodynamic shape optimization strategy based on three-dimensional CST modeling method[J]. Journal of Solid Rocket Technology201437(1): 1-6, 22 (in Chinese).
11 王迅, 蔡晋生, 屈崑, 等. 基于改进CST参数化方法和转捩模型的翼型优化设计[J]. 航空学报201536(2): 449-461.
  WANG X, CAI J S, QU K, et al. Airfoil optimization based on improved CST parametric method and transition model[J]. Acta Aeronautica et Astronautica Sinica201536(2): 449-461 (in Chinese).
12 徐亚峰. 基于CST参数化方法的飞机翼型快速设计研究[D]. 南京: 南京航空航天大学, 2012.
  XU Y F. Fast airfoil design based on CST parameterization[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
13 OYAMA A, NONOMURA T, FUJII K. Data mining of pareto-optimal transonic airfoil shapes using proper orthogonal decomposition: AIAA-2009-4000[R]. Reston: AIAA, 2009.
14 OYAMA A, VERBURG P, NONOMURA T, et al. Flow field data mining of pareto-optimal airfoils using proper orthogonal decomposition: AIAA-2010-1140[R]. Reston: AIAA, 2010.
15 POOLE D J, ALLEN C B, RENDALL T C S. Metric-based mathematical derivation of efficient airfoil design variables[J]. AIAA Journal201553(5): 1349-1361.
16 MASTERS D A, TAYLOR N J, RENDALL T C S, et al. Geometric comparison of aerofoil shape parameterization methods[J]. AIAA Journal201755(5): 1575-1589.
17 邬晓敬. 气动外形优化设计中的不确定性及高维问题研究[D]. 西安: 西北工业大学, 2018.
  WU X J. Research on uncertainty and high-dimensional problems in aerodynamic shape optimization design[D].Xi’an: Northwestern Polytechnical University, 2018 (in Chinese).
18 CINQUEGRANA D, IULIANO E. Investigation of adaptive design variables bounds in dimensionality reduction for aerodynamic shape optimization[J]. Computers & Fluids2018174: 89-109.
19 段焰辉, 吴文华, 范召林, 等. 基于本征正交分解的气动优化设计外形数据挖掘[J]. 物理学报201766(22): 138-147.
  DUAN Y H, WU W H, FAN Z L, et al. Proper orthogonal decomposition-based data mining of aerodynamic shape for design optimization[J]. Acta Physica Sinica201766(22): 138-147 (in Chinese).
20 JOLLIFFE I T. Principal component analysis[M]. New York: Springer, 2005.
21 赵秀红. 基于主成分分析的特征提取的研究[D]. 西安: 西安电子科技大学, 2016.
  ZHAO X H. Research on feature extraction based on principal component analysis[D].Xi’an: Xidian University, 2016 (in Chinese).
22 陈坚强, 吴晓军, 张健, 等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报202142(9):625739.
  CHEN J Q, WU X J, ZHANG J, et al. FlowStar: General unstructured-grid CFD software for National Numerical Windtunnel (NNW)Project[J]. Acta Aeronautica et Astronautica Sinica202142(9): 625739 (in Chinese).
文章导航

/