临近空间技术

超声速湍流边界层阵列式微吹气流动控制与减阻特性

  • 曾繁宇 ,
  • 邱云龙 ,
  • 曹占伟 ,
  • 张伦 ,
  • 陈伟芳
展开
  • 1.浙江大学 航空航天学院,杭州 310027
    2.浣江实验室 先进飞行器研究中心,绍兴 311800
    3.中国运载火箭技术研究院 空间物理重点实验室,北京 100076
    4.西安交通大学 能源与动力工程学院,西安 710049
.E-mail: qyl1992@zju.edu.cn

收稿日期: 2023-08-01

  修回日期: 2023-08-03

  录用日期: 2023-08-18

  网络出版日期: 2023-08-24

基金资助

浣江实验室专项项目(HJ-2023-06)

Flow control and drag reduction characteristics of micro-blowing array on supersonic turbulent boundary layer

  • Fanyu ZENG ,
  • Yunlong QIU ,
  • Zhanwei CAO ,
  • Lun ZHANG ,
  • Weifang CHEN
Expand
  • 1.School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310027,China
    2.Advanced Aircraft Research Center,Huanjiang Laboratory,Shaoxing 311800,China
    3.Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China
    4.School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China
E-mail: qyl1992@zju.edu.cn

Received date: 2023-08-01

  Revised date: 2023-08-03

  Accepted date: 2023-08-18

  Online published: 2023-08-24

Supported by

Specialized Research Projects of Huanjiang Laboratory(HJ-2023-06)

摘要

采用直接数值模拟(DNS)技术研究了方形微孔阵列微吹气对超声速湍流边界层的流动控制机制与减阻特性。横纵向数量为88×6的0.3 mm×0.3 mm微孔阵列布置在平板完全发展的湍流区域,多孔区域的横纵向中心距均为0.6 mm,孔隙率为25%。微吹气振幅分别为来流速度的0.2%(B1)、0.4%(B2)、0.6%(B3)。计算结果表明,微吹气技术能够降低超声速湍流边界层的表面摩阻,在0.6%的吹气振幅下多孔区域的总阻力减小了23%,且减阻率随微吹气振幅提高近似线性增长。湍动能平衡方程分析结果表明,在施加吹气控制后湍动能平衡方程所有源项均得到了增强。微吹气技术促进了近壁区的能级串联过程,破坏了原有的湍流边界层中速度条带结构和准流向涡间存在的自维持机制。边界层速度脉动的象限分析表明,微吹气技术的减阻效果体现在其对近壁区下扫过程的抑制作用。

本文引用格式

曾繁宇 , 邱云龙 , 曹占伟 , 张伦 , 陈伟芳 . 超声速湍流边界层阵列式微吹气流动控制与减阻特性[J]. 航空学报, 2023 , 44(S2) : 729396 -729396 . DOI: 10.7527/S1000-6893.2023.29396

Abstract

Direct Numerical Simulations (DNS) are used to study the flow control mechanism and drag reduction characteristics of square micropores array micro-blowing on supersonic turbulent boundary layer. The 0.3 mm × 0.3 mm micropores array with a horizontal and longitudinal number of 88×6 is arranged in the spatially developing turbulent region. The horizontal and longitudinal center distance of porous region is 0.6 mm, and the porosity is 25%. The amplitudes of micro-blowing array are 0.2% (B1), 0.4% (B2) and 0.6% (B3) of the freestream velocity, respectively. The calculation results show that the micro-blowing technology can reduce surface friction on supersonic turbulent boundary layer. The total friction of porous region is reduced by 23% at the blowing amplitude of 0.6%, and the drag reduction rate approximately exhibits a linear increase with the increase of micro-blowing amplitude. The results of the turbulent kinetic energy equilibrium analysis show that all source terms of the turbulent kinetic energy equilibrium equation are enhanced after blowing control is applied. The micro-blowing technology promotes the energy cascade process in the near-wall region, and destroys the self-sustaining mechanism between velocity streaks and quasi-streamwise vortices within the original turbulent boundary layer. The quadrant analysis of velocity pulsation on boundary layer shows that the drag reduction of the micro-blowing technique comes from its inhibitory effect on the downward sweeping process in the near-wall region.

参考文献

1 RICCO P, SKOTE M, LESCHZINER M A. A review of turbulent skin-friction drag reduction by near-wall transverse forcing[DB/OL]. arXiv preprint: 2103.047192021
2 KORNILOV V. Current state and prospects of researches on the control of turbulent boundary layer by air blowing[J]. Progress in Aerospace Sciences201576: 1-23.
3 CORKE THOMAS C, THOMAS FLINT O. Active and passive turbulent boundary-layer drag reduction[J]. AIAA Journal201856(10): 3835-3847.
4 WALSH M J. Riblets as a viscous drag reduction technique[J]. AIAA Journal201221(4): 485-486.
5 LI W P. Turbulence statistics of flow over a drag-reducing and a drag-increasing riblet-mounted surface[J]. Aerospace Science and Technology2020104: 106003.
6 WANG L H, HUANG W X, XU C X, et al. Relationship between wall shear stresses and streamwise vortices[J]. Applied Mathematics and Mechanics201940(3): 381-396.
7 FUKAGATA K, KERN S, CHATELAIN P, et al. Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction[J]. Journal of Turbulence20089: N35.
8 YAO J E, CHEN X, HUSSAIN F. Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing[J]. Journal of Fluid Mechanics2018852: 678-709.
9 CHENG X Q, WONG C W, HUSSAIN F, et al. Flat plate drag reduction using plasma-generated streamwise vortices[J]. Journal of Fluid Mechanics2021918: A24.
10 白建侠, 姜楠, 唐湛棋, 等. 双压电振子异步振动主动调制湍流边界层流向涡减阻[J]. 航空动力学报201934(12): 2539-2548.
  BAI J X, JIANG N, TANG Z Q, et al. Active modulation to streamwise vortex drag reduction of turbulent boundary layer by asynchronous vibration with double piezoelectric vibrator[J]. Journal of Aerospace Power201934(12): 2539-2548 (in Chinese).
11 JI S C, ZHANG B, LI J A, et al. Numerical study for active flow control using dielectric barrier discharge actuators[J]. Journal of Aerospace Engineering201730(5): 04017050.
12 KAMETANI Y, FUKAGATA K. Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction[J]. Journal of Fluid Mechanics2011681: 154-172.
13 MA R, GAO Z H, LU L S, et al. Skin-friction drag reduction by local porous uniform blowing in spatially developing compressible turbulent boundary layers[J]. Physics of Fluids202234: 125130.
14 LIU Q A, LUO Z B, WANG L, et al. Direct numerical simulations of supersonic turbulent boundary layer with streamwise-striped wall blowing[J]. Aerospace Science and Technology2021110: 106510.
15 KAMETANI Y, FUKAGATA K, ?RLü R, et al. Drag reduction in spatially developing turbulent boundary layers by spatially intermittent blowing at constant mass-flux[J]. Journal of Turbulence201617(10): 913-929.
16 Kim K, Sung H J. DNS of turbulent boundary layer with time-periodic blowing through a spanwise slot[C]∥Proceedings of the Asian Computational Fluid Dynamics Conference (5th). Busan, 2003: 835-842.
17 KIM K, SUNG H J. Effects of periodic blowing from spanwise slot on a turbulent boundary layer[J]. AIAA Journal200341(10): 1916-1924.
18 KIM K, JIN SUNG H. Effects of unsteady blowing through a spanwise slot on a turbulent boundary layer[J]. Journal of Fluid Mechanics2006557: 423.
19 CHENG X Q, QIAO Z X, ZHANG X, et al. Skin-friction reduction using periodic blowing through streamwise slits[J]. Journal of Fluid Mechanics2021920: A50.
20 ZHANG X, WONG C W, CHENG X Q, et al. Dependence of skin-friction reduction on the geometric parameters of blowing jet array[J]. Physics of Fluids202234(10): 105125.
21 HWANG D, BIESIADNY T. Experimental evaluation of penalty associated with micro-blowing for reducing skin friction[C]∥Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998: AIAA1998-677.
22 HWANG D. Review of research into the concept of the microblowing technique for turbulent skin friction reduction[J]. Progress in Aerospace Sciences200540(8): 559-575.
23 HWANG D. An experimental study of turbulent skin friction reduction in supersonic flow using a microblowing technique[C]∥Proceedings of the 38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000: AIAA2000-545.
24 KORNILOV V I, BOIKO A V. Efficiency of air microblowing through microperforated wall for flat plate drag reduction[J]. AIAA Journal201250(3): 724-732.
25 范云涛, 张阳, 叶志贤, 等. 微吹气对湍流平板边界层流动特性的影响及其减阻机理[J]. 航空学报202041(10): 123814.
  FAN Y T, ZHANG Y, YE Z X, et al. Micro-blowing: Effect on flow characteristics in turbulent flat plate boundary layer and drag reduction mechanism[J]. Acta Aeronautica et Astronautica Sinica202041(10): 123814 (in Chinese).
26 PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids200416(3): 530-545.
27 LI X L, FU D X, MA Y W, et al. Acoustic calculation for supersonic turbulent boundary layer flow[J]. Chinese Physics Letters200926(9): 094701.
28 傅德薰, 马延文, 李新亮. 可压缩湍流直接数值模拟[M]. 北京: 科学出版社, 2010.
  FU D X, MA Y W, LI X L. Direct numerical simulation of compressible turbulence[M]. Beijing: Science Press, 2010 (in Chinese).
29 WHITE F M. Viscous fluid flow[M]. New York: McGraw-Hill, 1974.
30 WU X H, MOIN P. Transitional and turbulent boundary layer with heat transfer[J]. Physics of Fluids201022(8): 085105.
31 Spalart P R. Direct simulation of a turbulent boundary layer up to Reθ =1410[J]. Journal Fluid Mechanics1988187: 61.
32 KAMETANI Y, KOTAKE A, FUKAGATA K, et al. Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows[J]. Physical Review Fluids20172(12): 123904.
33 CHOI H, MOIN P, KIM J. Active turbulence control for drag reduction in wall-bounded flows[J]. Journal of Fluid Mechanics1994262: 75-110.
34 XU C X, DENG B Q, HUANG W X, et al. Coherent structures in wall turbulence and mechanism for drag reduction control[J]. Science China Physics, Mechanics and Astronomy201356(6): 1053-1061.
35 XU C. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics201545: 111-140.
36 JIMéNEZ J, PINELLI A. The autonomous cycle of near-wall turbulence[J]. Journal of Fluid Mechanics1999389: 335-359.
37 LI W P, FAN Y T, MODESTI D, et al. Decomposition of the mean skin-friction drag in compressible turbulent channel flows[J]. Journal of Fluid Mechanics2019875: 101-123.
文章导航

/