微小冰晶粒子融化特性可视化实验
收稿日期: 2023-07-10
修回日期: 2023-07-16
录用日期: 2023-08-07
网络出版日期: 2023-08-24
基金资助
国家科技重大专项(J2019-Ⅲ-0010-0054);国家自然科学基金(52076164);结冰与防除冰重点实验室开放课题(IADL20220107)
Visual experimental investigation on melting characteristics of minuscule ice crystal particles
Received date: 2023-07-10
Revised date: 2023-07-16
Accepted date: 2023-08-07
Online published: 2023-08-24
Supported by
National Science and Technology Major Special Funds of China(J2019-III-0010-0054);National Natural Science Foundation of China(52076164);Key Laboratory of Icing and Anti/De-icing of CARDC(IADL20220107)
复杂气流环境中冰晶的融化特性是航空发动机防冰技术研究的关键,开展冰晶粒子融化特性的可视化实验研究是探究发动机积冰机理和提高飞行器安全性的重要手段。本文设计并搭建了微小悬浮冰晶融化特性可视化实验系统,提出了基于OpenCV的冰水相界面识别方法,开发了基于等效模型法的冰晶融化率计算程序。以体积为0.4~1.4 μL的球形冰晶粒子在壁面温度为5~35 ℃腔体内的融化过程作为研究对象,开展了冰晶融化特性实验研究,探究了温度、粒径对冰晶融化率的影响规律,基于实验数据拟合得到冰晶融化速率实验关联式。研究表明:冰晶融化率与时间基本呈线性关系;相较于温度,粒径对融化速率的影响更加明显;随着温度的升高,冰晶融化速率先快速增加后趋于平缓;当温度保持不变时,冰晶融化速率与粒径成反比;冰晶融化率较低时,冰芯容易发生“翻转”,从而导致冰晶融化率的测量值突变。该研究有助于深入理解冰晶相变换热机理,可为航空发动机内复杂气流环境下混合相冰晶积冰模型的优化提供理论依据。
魏震 , 刘秀芳 , 钟富豪 , 陈佳军 , 苗庆硕 , 侯予 . 微小冰晶粒子融化特性可视化实验[J]. 航空学报, 2023 , 44(S2) : 729301 -729301 . DOI: 10.7527/S1000-6893.2023.29301
The melting characteristics of ice crystals in complex airflow are crucial to the aircraft engine anti-icing technology. Visual experiments on the melting behavior of ice crystal particles play a vital role in exploring engine icing mechanisms and enhancing aircraft safety. In this study, we designed and established a visualization experimental system to examine the melting process of suspended minuscule ice crystals. An ice-water phase interface recognition method was proposed based on OpenCV, and a program to estimate the ice crystal melting rate was developed based on the equivalent model method. To carry out the experimental investigation of ice crystal melting characteristics, the melting process of spherical ice crystal particles with the volume ranging from 0.4 μL to 1.4 μL was conducted as study object in a closed chamber with the wall temperatures ranging from 5 °C to 35 °C. The effects of temperature and particle size on the melting rate of ice crystal were investigated, and an experimental correlation equation based on the collected experimental data was derived The results show that the ice crystal melting rate follows a linear relationship with time. The influence of enAI particle size on the melting rate is more significant than that of temperature. As temperature increases, the ice crystal melting rate first increases rapidly and then becomes gentle. When the temperature remains constant, the ice crystal melting rate is inversely proportional to the particle size. When the ice crystal melting rate is low, the ice core is prone to ‘flipping’, causing a sudden change in the measured melting rate of the ice crystal. This study contributes to a deeper understanding of the phase transition and heat transfer mechanisms of ice crystals and provide a theoretical basis for optimizing mixed-phase icing models under complex airflow environments within aircraft engines.
1 | MASON J, STRAPP W, CHOW P. The ice particle threat to engines in flight[C]∥Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006. |
2 | GRZYCH M L, MASON J. 6.8 weather conditions associated with jet engi ne power loss and damage due to ingestion of ice particles: what we’ve learned through 2009[C]∥Proc of the 14th Conference on Aviation, Range, and Aerospace Meteorology. 2010. |
3 | 袁庆浩, 樊江, 白广忱. 航空发动机内部冰晶结冰研究综述[J]. 推进技术, 2018, 39(12): 2641-2650. |
YUAN Q H, FAN J, BAI G C. Review on ice crystal icing in aeroengine[J]. Journal of Propulsion Technology, 2018, 39(12): 2641-2650 (in Chinese) . | |
4 | 沈浩, 韩冰冰, 张丽芬. 航空发动机中冰晶结冰的研究进展[J]. 实验流体力学, 2020, 34(6): 1-7. |
SHEN H, HAN B B, ZHANG L F. Research progress of the ice crystal icing in aero-engine[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 1-7 (in Chinese). | |
5 | 黄平, 卜雪琴, 刘一鸣, 等. 混合相/冰晶条件下的结冰研究综述[J]. 航空学报, 2022, 43(5): 025178. |
HUANG P, BU X Q, LIU Y M, et al. Mixed phase/glaciated ice accretion: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 025178 (in Chinese). | |
6 | 马乙楗, 柴得林, 王强, 等. 翼面结冰过程中的冰晶运动相变与黏附特性[J]. 航空学报, 2023, 44(1): 41-52. |
MA Y J, CHAI D L, WANG Q, et al. Phase change and adhesion characteristics of ice crystal movements in wing icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 41-52 (in Chinese). | |
7 | 卜雪琴, 李皓, 黄平, 等. 二维机翼混合相结冰数值模拟[J]. 航空学报, 2020, 41(12): 124085. |
BU X Q, LI H, HUANG P, et al. Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124085 (in Chinese). | |
8 | ZHONG F H, WEI Z, CHEN J J, et al. Dynamic behavior and heat transfer characteristics of non-spherical ice crystals in high-temperature air flow [J].Transactions of Nanjing University of Aeronautics and Astronautics,2023, 40(2): 205-215. |
9 | MASON B J. On the melting of hailstones[J]. Quarterly Journal of the Royal Meteorological Society, 1956, 82(352): 209-216. |
10 | RASMUSSEN R, PRUPPACHER H R. A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. I: a wind tunnel study of frozen drops of radius < 500 μm[J]. Journal of the Atmospheric Sciences, 1982, 39(1): 152-158. |
11 | BARTKUS T P, STRUK P, TSAO J C. Development of a coupled air and particle thermal model for engine icing test facilities[J]. SAE International Journal of Aerospace, 2015, 8(1): 15-32. |
12 | ZHANG J C, CHEN W F, ZHANG L F. Three dimensional numerical simulation of ice crystal melting under different influencing factors[J]. Journal of Physics: Conference Series, 2018, 1064: 012026. |
13 | HAN Y Q, KALA S, YAN S H, et al. Partial melting time model verification of a levitated ice particle[J]. Cold Regions Science and Technology, 2020, 173: 103013. |
14 | HAUK T, ROISMAN I V, TROPEA C D. Investigation of the melting behaviour of ice particles in an acoustic levitator[C]∥Proceedings of the 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2014. |
15 | YAN S, PALACIOS J. Experimental quantification of partial melting in a single frozen drop[C]∥8th AIAA Atmospheric and Space Environments Conference. 2016. |
16 | PALACIOS J, YAN S H, TAN C, et al. Experimental measurement of frozen and partially melted water droplet impact dynamics[C]∥Proceedings of the 6th AIAA Atmospheric and Space Environments Conference. 2014. |
17 | HINDMARSH J P, RUSSELL A B, CHEN X D. Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet[J]. International Journal of Heat and Mass Transfer, 2003, 46(7): 1199-1213. |
18 | ALVAREZ M, KREEGER R E, PALACIOS J. Experimental evaluation of the impact behavior of partially melted ice particles[J]. International Journal of Impact Engineering, 2019, 123: 70-76. |
/
〈 |
|
〉 |