含盐海水飞沫的结冰风洞试验相似准则
收稿日期: 2023-07-10
修回日期: 2023-07-16
录用日期: 2023-08-07
网络出版日期: 2023-08-24
基金资助
国家自然科学基金(12172372);国家重大科技专项(J2019-III-0017-0061)
Scaling law for salty sea spray icing wind tunnel test
Received date: 2023-07-10
Revised date: 2023-07-16
Accepted date: 2023-08-07
Online published: 2023-08-24
Supported by
National Natural Science Foundation of China(12172372);National Major Science and Technology Projects(J2019-III-0017-0061)
舰船在极地低温海域航行时,空气中存在大量低温含盐海水飞沫。长时间暴露在飞沫中会导致舰船结构结冰,影响正常航行。结冰风洞试验是研究飞沫结冰问题的重要手段,但使用含盐水会腐蚀设备,目前无法在大型结冰风洞中进行飞沫结冰试验。开展含盐海水飞沫结冰的相似准则研究,可以实现使用纯水模拟含盐飞沫结冰。通过测试和分析多种组分的海水样本物性参数,在经典相似理论的基础上,补充水膜厚度的韦伯数调和含盐水与纯水的表面张力差异,重新构造含盐水的冻结系数确保相变过程能量守恒。最终建立含盐飞沫结冰的参数方程,形成对应的相似转换方法流程。对NACA0012模型在飞沫结冰条件下的试验工况进行转换,使用NNW-ICE软件验证相似准则。结果表明,通过建立的相似准则,使用纯水可以模拟含盐飞沫结冰冰形,为大型结冰风洞开展含盐飞沫结冰研究提供了有力理论支撑。
刘宇 , 秦梦婕 , 王强 , 易贤 . 含盐海水飞沫的结冰风洞试验相似准则[J]. 航空学报, 2023 , 44(S2) : 729297 -729297 . DOI: 10.7527/S1000-6893.2023.29297
When ships navigate in polar regions, a large amount of low-temperature salt-containing spray exists in the air. Long-term exposure to the spray can cause the upper structure of the vessel and the internal intake of gas turbines to freeze, affecting the normal navigation of the ship. Large-scale icing wind tunnels can simulate the ice accretion of sea spray on ship components or scaled models, but the corrosive effect of seawater spray can endanger equipment’s safety. Therefore, sea spray icing experiments were conducted on small-scale equipment. The study of scaling law was conducted in a wind tunnel to simulate the icing of salinity sea spray. Physical properties were tested on various components of seawater samples, obtaining the surface tension, thermal conductivity, specific heat capacity, phase transition temperature, and latent heat. On the basis of classical similarity theory, the main differences between the icing of sea spray and pure water were analyzed. The classical icing wind tunnel scaling law was adopted and modified with the extension of the water film similarity and sea spray freezing coefficient. Ultimately, a scaling parameter equation for salinity sea spray icing was established, along with a corresponding process for scaling transformation. The icing condition of the NACA0012 model under sea spray conditions was scaled with the established scaling law, and the NNW-ICE software is used to validate the scaling law. The results indicate that via establishing the scaling law, it is possible to simulate the ice shape of salinity sea spray using pure water in icing wind tunnel tests. This study provides significant theoretical support for large-scale icing wind tunnels to conduct sea spray icing tests.
Key words: sea spray; vessel icing; wind tunnel test; scaling law
1 | 周靓, 李维浩, 石雅楠, 等. 船舶飞沫结冰研究综述[J]. 舰船科学技术, 2022, 44(10): 1-5. |
ZHOU L, LI W H, SHI Y N, et al. Overview of foreign research on ship spray icing[J]. Ship Science and Technology, 2022, 44(10): 1-5 (in Chinese). | |
2 | SAMUELSEN E M, EDVARDSEN K, GRAVERSEN R G. Modelled and observed sea-spray icing in Arctic-Norwegian waters[J]. Cold Regions Science and Technology, 2017, 134: 54-81. |
3 | FUKUSAKO S, HORIBE A, TAGO M. Ice accretion characteristics along a circular cylinder immersed in a cold air stream with seawater spray[J]. Experimental Thermal and Fluid Science, 1989, 2(1): 81-90. |
4 | BHATIA K, KHAN F. A predictive model to estimate ice accumulation on ship and offshore rig[J]. Ocean Engineering, 2019, 173: 68-76. |
5 | KULYAKHTIN A. Numerical modelling and experiments on sea spray icing[D]. Norwegian:Norwegian University of Science and Technology, 2014. |
6 | DEHGHANI-SANIJ A, MAHMOODI M, DEHGHANI S R, et al. Experimental investigation of vertical marine surface icing in periodic spray and cold conditions[J]. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141(2): 021502. |
7 | DESHPANDE S, S?TERDAL A, SUNDSB? P A. Experiments with sea spray icing: investigation of icing rates[J]. Journal of Offshore Mechanics and Arctic Engineering, 2024, 146(1): 011601. |
8 | MU Z Q, GUO W F, LI Y, et al. Wind tunnel test of ice accretion on blade airfoil for wind turbine under offshore atmospheric condition[J]. Renewable Energy, 2023, 209: 42-52. |
9 | VARGAS M, PAPADAKIS M, POTAPCZUK M, et al. Ice accretions on a swept GLC-305 airfoil[C]∥SAE Technical Paper Series. 2002. |
10 | STRUK P, AGUI J, RATVASKY T, et al. Ice-crystal icing accretion studies at the NASA propulsion systems laboratory: 10.4271/2019-01-1921 [R]. Washington, D.C.:NASA, 2019 |
11 | OLESKIW M, HYDE F, PENNA P. In-flight icing simulation capabilities of NRC’s altitude icing wind tunnel[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. 2001. |
12 | BERTHOUMIEU P, DéJEAN B, BODOC V, et al. ONERA research icing wind tunnel[C]∥Proceedings of the AIAA Aviation 2022 Forum. 2022. |
13 | 刘森云, 王桥, 易贤, 等. 3 m×2 m结冰风洞试验技术新进展(2020—2022年)[J]. 空气动力学学报, 2023, 41(1): 57-65. |
LIU S Y, WANG Q, YI X, et al. New progress of 3 m × 2 m icing wind tunnel test technology from 2020 to 2022[J]. Acta Aerodynamica Sinica, 2023, 41(1): 57-65 (in Chinese). | |
14 | RUFF G A. Analysis and verification of the icing scaling equations[D]. Tennessee: University of Tennessee, 1986. |
15 | RUFF G, ANDERSON D. Quantification of ice accretions for icing scaling evaluations[C]∥Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998. |
16 | KIND R, OLESKIW M M. Recent Developments in scaling methods for icing wind tunnel testing at reduced scale[C]∥ICAS Congress Conference. 2002. |
17 | ANDERSON D N, FEO A. Ice-accretion scaling using water-film thickness parameters[M]. 2012. |
18 | 周志宏, 易贤, 桂业伟, 等. 考虑水滴动力学效应的结冰试验相似准则[J]. 实验流体力学, 2016, 30(2): 20-25. |
ZHOU Z H, YI X, GUI Y W, et al. Icing scaling law with the dynamic effects of water droplets[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 20-25 (in Chinese). | |
19 | 易贤, 周志宏, 杜雁霞, 等. 考虑相变时间效应的结冰试验相似参数[J]. 实验流体力学, 2016, 30(2): 14-19. |
YI X, ZHOU Z H, DU Y X, et al. An icing scaling parameter with the effects of phase change time[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 14-19 (in Chinese). | |
20 | 张丽芬, 葛鑫, 张斐, 等. 旋转帽罩结冰相似准则的冰风洞试验研究[J]. 实验流体力学, 2021, 35(4): 52-59. |
ZHANG L F, GE X, ZHANG F, et al. An ice wind tunnel test study on the scaling law of a rotating cone[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 52-59 (in Chinese). | |
21 | 刘宇, 易贤, 王强, 等. 结冰风洞试验混合相似转换方法及其验证[J]. 空气动力学学报, 2021, 39(2): 176-183. |
LIU Y, YI X, WANG Q, et al. A hybrid scaling method for icing wind tunnel and validation[J]. Acta Aerodynamica Sinica, 2021, 39(2): 176-183 (in Chinese). | |
22 | 张晶. 海卤水浓缩过程中锂浓度的变化规律研究[D]. 天津: 天津科技大学, 2012. |
ZHANG J. Research on variation of lithium concentration during the seawater and brine concentration process[D]. Tianjin: Tianjin University of Science & Technology, 2012 (in Chinese). | |
23 | ANDERSON D.N. Manual of scaling method: NASA/CR-2004-212875 [R]. Washington, D.C.: NASA, 2004. |
24 | BRAGG M B. A similarity analysis of the droplet trajectory equation[J]. AIAA Journal, 1982, 20(12): 1681-1686. |
25 | Wright W B. User manual for the Nasa Glenn ice accretion code LEWICE vesion 2.0: NASA/CR-1999-209409 [R]. Washington, D.C.: NASA, 1999. |
26 | LANGMUIR I, BLODGETT K. Mathematical investigation of water droplet trajectories[R]. Army Air Forces Technical Report. 1946. |
27 | BILANIN A, ANDERSON D. Ice accretion with varying surface tension: AIAA-1995-0538 [R] Reston: AIAA, 1993. |
28 | FEO A, URDIALES M. Stagnation point probe in a water spray immersed in an airstream: AE/TNO/0452/003/INTA/95 [R]. 1995. |
29 | MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42. |
30 | 任靖豪, 易贤, 王强, 等. 复杂构型水滴收集率的拉格朗日计算方法[J]. 航空动力学报, 2020, 35(12): 2553-2561. |
REN J H, YI X, WANG Q, et al. Lagrangian simulation method of droplet collection efficiency for complex configuration[J]. Journal of Aerospace Power, 2020, 35(12): 2553-2561 (in Chinese). | |
31 | 任靖豪, 王强, 刘宇, 等. 大型商用运输机机翼增升构型水滴撞击特性计算[J]. 空气动力学学报, 2021, 39(1): 52-58, 72. |
REN J H, WANG Q, LIU Y, et al. Numerical simulation of droplet impingement characteristics on a high-lift configuration of a large commercial transport aircraft[J]. Acta Aerodynamica Sinica, 2021, 39(1): 52-58, 72 (in Chinese). | |
32 | 任靖豪, 王强, 李维浩, 等. 基于梯度下降的水滴收集率计算方法[J]. 航空学报, 2023, 44(4): 6-15. |
REN J H, WANG Q, LI W H, et al. A prediction algorithm of collection efficiency based on gradient descent method[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 6-15 (in Chinese). | |
33 | CHEN N L, HU Y P, JI H H, et al. Hot-air anti-icing heat transfer and surface temperature modeling[J]. AIAA Journal, 2021, 59(9): 3657-3666. |
/
〈 |
|
〉 |