快速优化薄板中各向异性材料分布的等效变形模量算法
收稿日期: 2023-07-06
修回日期: 2023-07-24
录用日期: 2023-08-08
网络出版日期: 2023-08-24
基金资助
国家自然科学基金(12172077);大连市高层次人才创新支持计划(2019RD04);大连市科技创新基金(2020JJ25CY011)
An equivalent⁃deformation⁃modulus algorithm for fast optimization of anisotropic material distribution in thin plates
Received date: 2023-07-06
Revised date: 2023-07-24
Accepted date: 2023-08-08
Online published: 2023-08-24
Supported by
National Natural Science Foundation of China(12172077);Dalian High-Level Talent Innovation Support Program(2019RD04);Dalian Science and Technology Innovation Fund(2020JJ25CY011)
各向异性材料广泛存在于各种机械设备的承重构件中。与各向同性材料不同,各向异性材料中不同材料相的分布和方向,可以根据载荷条件调整承重构件的力学性能。本文提出了一种各向异性材料分布的优化方法,即等效变形模量(EDM)算法,以有效地优化各向异性薄板的承载能力。该算法实现了对薄板抗弯能力的多模态协同优化,解决了传统优化算法中特征值重叠的问题,在航空领域中将起到重要作用。以短纤维增强聚合物薄板的纤维取向优化为例,在不改变薄板质量和形状的前提下,与传统优化算法相比,EDM算法可以将临界屈曲载荷提高28.9%,将计算成本降低98.1%。此外,EDM算法还被应用于机身中形状不规则的承重构件设计中,并使其临界屈曲载荷提高27.2%~30.8%。
许敉 , 毛泽钡 , 王博 , 李桐 . 快速优化薄板中各向异性材料分布的等效变形模量算法[J]. 航空学报, 2024 , 45(10) : 229273 -229273 . DOI: 10.7527/S1000-6893.2023.29273
Anisotropic materials widely exist in load-bearing components for various mechanical devices. Unlike isotropic materials, the distribution and orientation of different material phases in anisotropic materials can sensitively mediate the mechanical output of these components according to the loading conditions. In this paper, an optimization method for anisotropic material distribution, named Equivalent-Deformation-Modulus (EDM) algorithm, is proposed to efficiently optimize the load-bearing ability of anisotropic thin plates. This EDM algorithm will play an important role in the aviation, for it enables the multi-modal co-optimization for the buckling resistance of thin plates, and solves the problem of overlapping eigenvalue in traditional optimization algorithm. Taking the optimization of fiber orientation in short fiber reinforced polymer thin plate as an example, without changing the mass and shape of the plate, this EDM algorithm can improve the critical buckling load by 28.9% and reduce the computational cost by 98.1%, compared to traditional optimization algorithm. The EDM method was also applied to designing a load-bearing component in the airframe with an irregular shape by increasing the critical buckling load by 27.2%-30.8%.
1 | WENK H R, VAN HOUTTE P. Texture and anisotropy[J]. Reports on Progress in Physics, 2004, 67(8): 1367-1428. |
2 | DHARMAVARAPU P, M B S S R. Aramid fibre as potential reinforcement for polymer matrix composites: A review[J]. Emergent Materials, 2022, 5(5): 1561-1578. |
3 | LI T, WANG Z X, ZHANG H, et al. Effect of aramid nanofibers on interfacial properties of high performance fiber reinforced composites[J]. Composite Interfaces, 2022, 29(3): 312-326. |
4 | MORAMPUDI P, NAMALA K K, GAJJELA Y K, et al. Review on glass fiber reinforced polymer composites[J]. Materials Today: Proceedings, 2021, 43: 314-319. |
5 | SATHISHKUMAR T P, SATHEESHKUMAR S, NAVEEN J. Glass fiber-reinforced polymer composites?A review[J]. Journal of Reinforced Plastics and Composites, 2014, 33(13): 1258-1275. |
6 | LI Y G, LI N Y, GAO J. Tooling design and microwave curing technologies for the manufacturing of fiber-reinforced polymer composites in aerospace applications[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(1): 591-606. |
7 | LI Y G, LI N Y, ZHOU J, et al. Microwave curing of multidirectional carbon fiber reinforced polymer composites[J]. Composite Structures, 2019, 212: 83-93. |
8 | AN Q L, CHEN J, CAI X J, et al. Thermal characteristics of unidirectional carbon fiber reinforced polymer laminates during orthogonal cutting[J]. Journal of Reinforced Plastics and Composites, 2018, 37(13): 905-916. |
9 | KIM J W, KIM H S. Study on fibre orientation and fibre content of glass fibre reinforced polymer[J]. Materials Research Innovations, 2014, 18(sup2): S2-482-S2-487. |
10 | KIM J W, KIM H S, LEE D G. Study on fibre orientation of weld line parts during injection moulding of fibre reinforced plastic by image processing[J]. Materials Research Innovations, 2011, 15(sup1): s303-s306. |
11 | DO T T, LEE D J. Analysis of tensile properties for composites with wrinkled fabric[J]. Journal of Mechanical Science and Technology, 2010, 24(2): 471-479. |
12 | ZARUTSKII V A, SIVAK V F. Experimental analysis of the natural vibrations and stability of cylindrical shells reinforced with rectangular plates[J]. International Applied Mechanics, 2008, 44(5): 562-564. |
13 | HADJILOIZI D A, KALAMKAROV A L, GEORGIA DES A V. Plane stress analysis of magnetoelectric composite and reinforced plates: Applications to wafer- and rib-reinforced plates and three-layered honeycomb shells[J]. ZAMM - Journal of Applied Mathematics and Mechanics, 2017, 97(7): 786-814. |
14 | WANG Z G. Recent advances in novel metallic honeycomb structure[J]. Composites Part B: Engineering, 2019, 166: 731-741. |
15 | ZHANG L, LIU B, GU Y, et al. Modelling and characterization of mechanical properties of optimized honeycomb structure[J]. International Journal of Mechanics and Materials in Design, 2020, 16(1): 155-166. |
16 | HAMM C E, MERKEL R, SPRINGER O, et al. Architecture and material properties of diatom shells provide effective mechanical protection[J]. Nature, 2003, 421(6925): 841-843. |
17 | STUDART A R. Biological and bioinspired composites with spatially tunable heterogeneous architectures[J]. Advanced Functional Materials, 2013, 23(36): 4423-4436. |
18 | ZANNONI C, MANTOVANI R, VICECONTI M. Material properties assignment to finite element models of bone structures: A new method[J]. Medical Engineering & Physics, 1999, 20(10): 735-740. |
19 | REZNIKOV N, SHAHAR R, WEINER S. Bone hierarchical structure in three dimensions[J]. Acta Biomaterialia, 2014, 10(9): 3815-3826. |
20 | PARSONS A J, AHMED I, HAN N, et al. Mimicking bone structure and function with structural composite materials[J]. Journal of Bionic Engineering, 2010, 7: S1-S10. |
21 | ROPER S W K, LEE H, HUH M, et al. Simultaneous isotropic and anisotropic multi-material topology optimization for conceptual-level design of aerospace components[J]. Structural and Multidisciplinary Optimization, 2021, 64(1): 441-456. |
22 | MARíN J C, GRACIANI E. Normal stress flow evaluation in composite aircraft wing sections by strength of material models[J]. Composite Structures, 2022, 282: 115088. |
23 | CHEN J Y, LIU X J, TIAN Y J, et al. 3D-printed anisotropic polymer materials for functional applications[J]. Advanced Materials, 2022, 34(5): e2102877. |
24 | LUND E. Discrete material and thickness optimization of laminated composite structures including failure criteria[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2357-2375. |
25 | SJ?LUND J H, PEETERS D, LUND E. A new thickness parameterization for discrete material and thickness optimization[J]. Structural and Multidisciplinary Optimization, 2018, 58(5): 1885-1897. |
26 | NIU B, SHAN Y, LUND E. Discrete material optimization of vibrating composite plate and attached piezoelectric fiber composite patch[J]. Structural and Multidisciplinary Optimization, 2019, 60(5): 1759-1782. |
27 | DUAN Z Y, YAN J, LEE I, et al. Discrete material selection and structural topology optimization of composite frames for maximum fundamental frequency with manufacturing constraints[J]. Structural and Multidisciplinary Optimization, 2019, 60(5): 1741-1758. |
28 | DUAN Z Y, YAN J, LEE I, et al. A two-step optimization scheme based on equivalent stiffness parameters for forcing convexity of fiber winding angle in composite frames[J]. Structural and Multidisciplinary Optimization, 2019, 59(6): 2111-2129. |
29 | DUAN Z Y, YAN J, LEE I, et al. Integrated design optimization of composite frames and materials for maximum fundamental frequency with continuous fiber winding angles[J]. Acta Mechanica Sinica, 2018, 34(6): 1084-1094. |
30 | YAN J, DUAN Z Y, LUND E, et al. Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model[J]. Acta Mechanica Sinica, 2016, 32(3): 430-441. |
31 | TIAN S M, WANG M, QI W C. Effects of elastically supported boundaries on flutter characteristics of thin-walled panels[J]. Energies, 2022, 15(19): 7088. |
32 | ZAWADA-MICHA?OWSKA M, PIE?KO P, JóZWIK J, et al. A comparison of the geometrical accuracy of thin-walled elements made of different aluminum alloys[J]. Materials, 2021, 14(23): 7242. |
33 | LIU C N, CHENG H, ZHANG K F, et al. An efficient trans-scale and multi-stage approach for the deformation analysis of large-sized thin-walled composite structure in aircraft assembly[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(9): 5697-5713. |
34 | XU F F, LI H, ZHANG D X. A study on dynamic characteristics of thin-walled cylindrical cavities with a large aspect ratio[J]. Aerospace, 2022, 9(4): 174. |
35 | ABRAMIAN A, VIROT E, LOZANO E, et al. Nondestructive prediction of the buckling load of imperfect shells[J]. Physical Review Letters, 2020, 125(22): 225504. |
36 | JIAO P, CHEN Z P, MA H, et al. Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 2: Numerical study[J]. Thin-Walled Structures, 2021, 169: 108330. |
37 | ROZYLO P, FERDYNUS M, DEBSKI H, et al. Progressive failure analysis of thin-walled composite structures verified experimentally[J]. Materials, 2020, 13(5): 1138. |
38 | SZKLAREK K, GAJEWSKI J. Optimisation of the thin-walled composite structures in terms of critical buckling force[J]. Materials, 2020, 13(17): 3881. |
39 | ERKMEN R E. Elastic buckling analysis of thin-walled beams including web-distortion[J]. Thin-Walled Structures, 2022, 170: 108604. |
40 | LUO Y J, ZHAN J J. Linear buckling topology optimization of reinforced thin-walled structures considering uncertain geometrical imperfections[J]. Structural and Multidisciplinary Optimization, 2020, 62(6): 3367-3382. |
41 | PRATO A, AL-SAYMAREE M S M, FEATHERST ON C A, et al. Buckling and post-buckling of thin-walled stiffened panels: Modelling imperfections and joints[J]. Thin-Walled Structures, 2022, 172: 108938. |
42 | SUN Y, TIAN K, LI R, et al. Accelerated Koiter method for post-buckling analysis of thin-walled shells under axial compression[J]. Thin-Walled Structures, 2020, 155: 106962. |
43 | WANG Q N, QIAN C F, WU Z W. Research on the rational design method of strength reinforcement for thin-walled structure based on limit load analysis[J]. Applied Sciences, 2022, 12(4): 2208. |
44 | SIRAJUDEEN R S, SEKAR R. Buckling analysis of pultruded glass fiber reinforced polymer (GFRP) angle sections[J]. Polymers, 2020, 12(11): 2532. |
45 | KASIVISWANATHAN M, UPADHYAY A. Global buckling behavior of blade stiffened compression flange of FRP box-beams[J]. Structures, 2021, 32: 1081-1091. |
46 | ARRANZ S, SOHOULI A, SULEMAN A. Buckling optimization of variable stiffness composite panels for curvilinear fibers and grid stiffeners[J]. Journal of Composites Science, 2021, 5(12): 324. |
47 | ZHANG W H, JIU L P, MENG L. Buckling-constrained topology optimization using feature-driven optimization method[J]. Structural and Multidisciplinary Optimization, 2022, 65(1): 37. |
48 | LIU Y R, WANG L, GU K X, et al. Artificial Neural Network (ANN)-Bayesian Probability Framework (BPF) based method of dynamic force reconstruction under multi-source uncertainties[J]. Knowledge-Based Systems, 2022, 237: 107796. |
49 | SCHITTKOWSKI K. NLPQL: A fortran subroutine solving constrained nonlinear programming problems[J]. Annals of Operations Research, 1986, 5(1): 485-500. |
50 | LI Z Y, LIU Z, LEI Z, et al. An innovative computational framework for the analysis of complex mechanical behaviors of short fiber reinforced polymer composites[J]. Composite Structures, 2021, 277: 114594. |
51 | ZHANG L, LI Z Y, ZHANG H Y, et al. Fatigue failure mechanism analysis and life prediction of short fiber reinforced polymer composites under tension-tension loading[J]. International Journal of Fatigue, 2022, 160: 106880. |
52 | RITZ W. über eine neue methode zur l?sung gewisser variationsprobleme der mathematischen physik[J]. Journal für die reine und angewandte Mathematik, 2009, 1909(135): 1-61 (in German). |
53 | ?IT?AN P. The Rayleigh-Ritz method still competitive[J]. Journal of Computational and Applied Mathematics, 1994, 54(3): 297-306. |
54 | NEVES M M, RODRIGUES H, GUEDES J M. Generalized topology design of structures with a buckling load criterion[J]. Structural Optimization, 1995, 10(2): 71-78. |
55 | DU J B, OLHOFF N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps[J]. Structural and Multidisciplinary Optimization, 2007, 34(2): 91-110. |
56 | MA Z D, KIKUCHI N, CHENG H C, et al. Topological optimization technique for free vibration problems[J]. Journal of Applied Mechanics, 1995, 62(1): 200-207. |
57 | MA Z D, KIKUCHI N, CHENG H C. Topological design for vibrating structures[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 121(1-4): 259-280. |
58 | TADJBAKHSH I, KELLER J B. Strongest columns and isoperimetric inequalities for eigenvalues[J]. Journal of Applied Mechanics, 1962, 29(1): 159. |
59 | ZHENG J C, ZHANG P W, ZHANG D H, et al. A multi-scale submodel method for fatigue analysis of braided composite structures[J]. Materials, 2021, 14(15): 4190. |
60 | ARAI K, YODO K, OKADA H, et al. Ultra-large scale fracture mechanics analysis using a parallel finite element method with submodel technique[J]. Finite Elements in Analysis and Design, 2015, 105: 44-55. |
61 | SUN Y T, ZHAI J J, ZHANG Q, et al. Research of large scale mechanical structure crack growth method based on finite element parametric submodel[J]. Engineering Failure Analysis, 2019, 102: 226-236. |
/
〈 |
|
〉 |