融合柔性基础传递函数的转子系统建模方法及验证
收稿日期: 2023-06-30
修回日期: 2023-07-23
录用日期: 2023-07-30
网络出版日期: 2023-08-24
基金资助
国家自然科学基金(12272035);中央高校基本科研业务费专项资金(JD2302)
Modeling method and verification for rotor systems integrated with transfer functions of flexible foundation
Received date: 2023-06-30
Revised date: 2023-07-23
Accepted date: 2023-07-30
Online published: 2023-08-24
Supported by
National Natural Science Foundation of China(12272035);The Fundamental Research Funds for the Central Universities(JD2302)
航空发动机、火箭涡轮泵等现代高端涡轮机械对性能有着极致的需求,其轻柔化的支承结构导致转子与柔性基础振动耦合特性明显,必须将其柔性支承结构纳入整体动力学分析之中。然而,柔性基础的高精度建模过程需要耗费大量时间,同时简化的基础模型也难以表达其真实的动力学特性。为此,提出了融合柔性基础传递函数的转子系统动力学建模仿真方法:将实测得到的柔性基础传递函数通过状态子空间法拟合获得低维时域和频域表征的数学模型,通过支承力模型将柔性基础模型耦合到转子有限元模型之中,最终形成基于实物传递函数的混合转子动力学模型。同时,提出了柔性基础从稳态到瞬态的模型转换策略,并采用线性-非线性节点(显-隐)分离的快速瞬态数值积分方法进行求解。基于所提模型和计算方法,开展了柔性基础-转子系统的稳态、瞬态动力学数值仿真,以及稳定转速扫频激励和降速不平衡激励的振动测试试验,结果表明:实测的柔性基础振动特性,能够有效地体现在整机动力学分析之中,且考虑柔性基础特性的转子动力学模型所预测的瞬态动力学响应与试验结果更为吻合。所提方法为含复杂柔性基础的转子系统提供了行之有效的整机建模及瞬态仿真方法。
李帅 , 李启行 , 谌璨 , 方志法 , 王维民 . 融合柔性基础传递函数的转子系统建模方法及验证[J]. 航空学报, 2024 , 45(3) : 229250 -229250 . DOI: 10.7527/S1000-6893.2023.29250
Modern high-end turbomachines, such as aviation engines and rocket turbo pumps, have extremely high demands for performance. The flexible support structure of these machines results in significant coupling of vibration characteristics between the rotor and flexible foundation, making it necessary to include the flexible support structure in the overall dynamic analysis. However, the modeling process of high accuracy flexible support structures needs to take considerable time, and the simplified support model cannot represent the dynamic characteristics of real support structures. Therefore, a simulation method for rotor system dynamic modeling integrated with flexible foundation transfer functions is proposed. The measured transfer functions of the flexible foundation are fitted by the state subspace method to obtain a low-dimensional mathematical model with time-domain and frequency-domain representation. The flexible foundation model is coupled to the rotor finite element model through the support force model to form a hybrid rotor dynamic model based on physical transfer functions. At the same time, a model transformation strategy for flexible foundations from steady-state to transient is proposed, and a fast transient numerical integration method with linear-nonlinear (explicit-implicit) node separation is used to solve the problem. Based on the proposed model and computational method, numerical simulations of steady-state and transient dynamics of the flexible foundation-rotor system are conducted, as well as vibration testing experiments with the sweep frequency excitation at a stable speed and unbalance excitation during shut-down. The results show that the measured vibration characteristics of the flexible foundation can be effectively coupled in the overall dynamic analysis, and the transient dynamic response predicted by the rotor dynamic model, considering the flexible foundation characteristics, is more consistent with the experimental results. The proposed method provides an effective approach for modeling and simulating the overall system with complex flexible foundations.
1 | 张大义, 刘烨辉, 洪杰, 等. 航空发动机整机动力学模型建立与振动特性分析[J]. 推进技术, 2015, 36(5): 768-773. |
ZHANG D Y, LIU Y H, HONG J, et al. Investigation on dynamical modeling and vibration characteristics for aero engine[J]. Journal of Propulsion Technology, 2015, 36(5): 768-773 (in Chinese). | |
2 | MOORE J J. Rotordynamic analysis of a large industrial turbo-compressor including finite element substructure modeling[C]∥ American Society of Mechanical Engineers. American Society of Mechanical Engineers Digital Collection. 2008: 1233-1243. |
3 | JEON S M, KWAK H D, YOON S H, et al. Rotordynamic analysis of a turbopump with the casing structural flexibility[J]. Journal of Propulsion and Power, 2008, 24(3): 433-436. |
4 | 高金海, 洪杰. 航空发动机整机动力特性建模技术研究[J]. 战术导弹技术, 2006(3): 29-35. |
GAO J H, HONG J. Study of modeling technique for dynamic characteristics of engine casing[J]. Tactical Missile Technology, 2006(3): 29-35 (in Chinese). | |
5 | 梁小鸥, 臧朝平, 雷新亮, 等. 涡轮后机匣的结构动力学精确建模[J]. 航空发动机, 2022, 48(1): 47-53. |
LIANG X O, ZANG C P, LEI X L, et al. Accurate structural dynamic modeling of a rear spokes-frame casing of the turbine[J]. Aeroengine, 2022, 48(1): 47-53 (in Chinese). | |
6 | AMER M, PAEHR M, SCHEIDT L P, et al. Determining the influence of casing vibrational behavior on rotordynamics[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(5): 051012-051020. |
7 | 张耀涛, 徐可君, 秦海勤. 双转子-支承-机匣耦合系统非线性动力学响应分析[J]. 机电工程, 2019, 36 (2): 168-173. |
ZHANG Y T, XU K J, QING H Q. Nonlinear dynamic response analysis of dual-rotor-support-casing system[J]. Journal of Mechanical and Electrical Engineering, 2019, 36(2): 168-173 (in Chinese). | |
8 | 秦海勤, 张耀涛, 徐可君. 双转子-支承-机匣耦合系统碰摩振动响应分析及试验验证[J]. 机械工程学报, 2019, 55(19): 75-83. |
QING H Q, ZHANG Y T, XU K J. Rubbing vibration response theoretical analysis and experimental verification for a double rotor support casing system[J]. Journal of Mechanical Engineering, 2019, 55(19): 75-83 (in Chinese). | |
9 | WANG N, LIU C, JIANG D, et al. Casing vibration response prediction of dual-rotor-blade-casing system with blade-casing rubbing[J]. Mechanical Systems and Signal Processing, 2019, 118: 61-77. |
10 | LI B, ZHOU H, LIU J, et al. Modeling and dynamic characteristic analysis of dual rotor-casing coupling system with rubbing fault[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2022, 41(1): 41-59. |
11 | CHEN G. Vibration modelling and verifications for whole aero-engine[J]. Journal of Sound and Vibration, 2015, 349: 163-176. |
12 | 陈果. 含复杂滚动轴承建模的航空发动机整机振动耦合动力学模型[J]. 航空动力学报, 2017, 32(9): 2193-2204. |
CHEN G, Whole aero-engine vibration coupling dynamics model including modeling of complex ball and roller bearings[J]. Journal of Aerospace Power, 2017, 32(9): 2193-2204 (in Chinese). | |
13 | YANG Y, YANG W, JIANG D. Simulation and experimental analysis of rolling element bearing fault in rotor-bearing-casing system[J]. Engineering Failure Analysis, 2018, 92: 205-221. |
14 | 孙传宗, 杨瑞, 陈予恕, 等. 机匣-双转子高维系统建模与实验验证[J]. 振动与冲击, 2018, 37(18): 152-157. |
SUN C Z, YANG R, CHEN Y S, et al. Modeling and experiment verification of a casing-dual-rotor high-dimensional system[J]. Journal of Vibration & Shock, 2018, 37(18): 152-157 (in Chinese). | |
15 | 边子方. 基于有限元增量传递矩阵法研究转子系统的非线性特性[D]. 沈阳:东北大学,2018. |
BIAN Z F. The nonlinear characteristic research of rotor systems with the finite element incremental transfer matrix method[D]. Shenyang:Northeast University,2018 (in Chinese). | |
16 | 罗忠, 王晋雯, 韩清凯, 等. 组合支承转子系统动力学的研究进展[J]. 机械工程学报, 2021, 57(7): 44-60. |
LUO Z, WANG J W, HAN Q K, et al. Review on dynamics of the combined support-rotor system[J]. Journal of Mechanical Engineering, 2021, 57(7): 44-60 (in Chinese). | |
17 | 陈予恕, 张华彪. 航空发动机整机动力学研究进展与展望[J]. 航空学报, 2011, 32(8): 1371-1391. |
CHEN Y S, ZHANG H B. Review and prospect on the research of dynamics of complete aero-engine systems[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1371-1391 (in Chinese). | |
18 | 赵斌. 航空发动机整机振动半实物仿真模型研究[D]. 南京:南京航空航天大学, 2015. |
ZHAO B. Study on a semi-physical simulation model for the whole aero-engine vibration[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese). | |
19 | KRüGER T D. Consideration of complex support structure dynamics in rotordynamic assessments[C]∥ American Society of Mechanical Engineers. 2013. |
20 | 赵斌, 陈果, 冯国全. 航空发动机整机振动半实物建模方法研究[J]. 推进技术, 2016, 37(2): 346-353. |
ZHAO B, CHEN G, FENG G Q. Study on a semi-physical method for modeling overall vibration of an aeroengine[J]. Journal of Propulsion Technology, 2016, 37(2): 346-353 (in Chinese). | |
21 | LI Q, CHEN C, GAO S, et al. The coupled bending-torsional dynamic behavior in the rotating machinery: modeling, simulation and experiment validation[J]. Mechanical Systems and Signal Processing, 2022, 178: 109306. |
22 | MCKELVEY T, AKCAY H, LJUNG L. Subspace-based multivariable system identification from frequency response data[J]. IEEE Transactions on Automatic Control, 1996, 41(7): 960-979. |
23 | SAUER T. Numerical analysis[M]. Upper Saddle River: Addison-Wesley Publishing Company, 2012. |
24 | CLOUD C H. Stability of rotors supported by tilting pad journal bearings[D]. Virginia: University of Virginia, 2007: 120-136. |
/
〈 |
|
〉 |