流体力学与飞行力学

地效环境下悬停状态直升机旋翼桨/涡干扰噪声特性

  • 王伟琪 ,
  • 陈希 ,
  • 招启军
展开
  • 南京航空航天大学 直升机动力学全国重点实验室,南京 210016
.E-mail: zhaoqijun@nuaa.edu.cn

收稿日期: 2023-06-19

  修回日期: 2023-07-24

  录用日期: 2023-08-12

  网络出版日期: 2023-08-24

基金资助

国家自然科学基金(12032012);江苏高校优势学科建设工程资助项目

Hovering helicopter rotor blade/vortex interaction noise characteristics in ground effect environment

  • Weiqi WANG ,
  • Xi CHEN ,
  • Qijun ZHAO
Expand
  • National Key Laboratory of Helicopter Aeromechanics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

Received date: 2023-06-19

  Revised date: 2023-07-24

  Accepted date: 2023-08-12

  Online published: 2023-08-24

Supported by

National Natural Science Foundation of China(12032012);A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institution

摘要

为掌握直升机贴地飞行时旋翼噪声辐射特性,首先基于可压缩雷诺平均Navier-Stokes方程和Ffowcs Williams-Hawkings方程发展了一套适用于地效状态旋翼/机身干扰的气动与噪声分析方法,通过Lynx尾桨地面效应试验及NASA旋翼/机身干扰试验与计算结果的对比,验证了所建立方法的可靠性。然后,开展了机身和桨毂对旋翼流场的影响研究,发现机身改变了旋翼的气动载荷分布并提高中等阶次(8~12阶次)的噪声辐射水平;桨毂会削弱桨叶中段(r=0.4R~0.7RR为旋翼半径)的噪声贡献。最后,研究了不同离地高度(h)时旋翼的气动与噪声特性,发现存在一个出现桨/涡干扰噪声的“临界离地高度”。结果表明:旋翼拉力和机身升力随h增大而减小;当h>1.8R时地面效应的影响可以忽略;当h=0.6R时地面和机身的双重阻塞作用会改变旋翼入流情况,尤其在桨尖区域诱发剧烈的载荷波动,并在特征观测点接收到明显的桨/涡干扰噪声;根据时/频特性给出了本文的“临界离地高度”约为0.7R,为直升机贴地飞行时抑制噪声提供了参考。

本文引用格式

王伟琪 , 陈希 , 招启军 . 地效环境下悬停状态直升机旋翼桨/涡干扰噪声特性[J]. 航空学报, 2024 , 45(12) : 129196 -129196 . DOI: 10.7527/S1000-6893.2023.29196

Abstract

To grasp rotor aeroacoustic radiation characteristics during helicopter flight close to the ground, firstly, based on the compressible Reynolds average Navier-Stokes equations and the Ffowcs Williams-Hawkings equations, a set of aerodynamic and aeroacoustic analysis method suitable for rotor/fuselage interaction in ground effect state was developed. The reliability of the established method was verified by comparing the ground effect test of Lynx tail rotor and the NASA rotor/fuselage interaction test with calculation results. Then, the influence of fuselage and hub on the rotor flowfield was investigated. It was found that the fuselage could change the rotor aerodynamic load distribution and increase the aeroacoustic radiation level of the intermediate order (8th–12th order). The aeroacoustic contribution of the blade middle section (r=0.4R–0.7RR is the radius of rotor) could be weaken by the hub. Finally, the aerodynamic and aeroacoustic characteristics of the rotor at different heights (h) above the ground were investigated and a “critical ground height” with Blade/Vortex Interaction (BVI) noise was found. The results show that the rotor thrust and fuselage lift decrease with the increase of ground height. When h>1.8R, the influence of ground effect can be ignored. When h=0.6R, the inflow of the rotor will be changed by the blocking effect of the ground and the fuselage. Especially, load fluctuations are induced severely in the blade tip area and obvious BVI noise is received at the characteristic observation points. According to the time/frequency characteristics, this paper suggests a “critical ground height” of approximately 0.7R, which provides a reference for the noise suppression when the helicopter flies close to the ground.

参考文献

1 MILLUZZO J I III, LEISHMAN J G. Vortical sheet behavior in the wake of a rotor in ground effect[J]. AIAA Journal201755(1): 24-35.
2 MOUSHEGIAN A M, SMITH M J. Physics and accuracy of dual-solver simulations of rotors in ground effect[J]. Journal of the American Helicopter Society202368(1): 1-16.
3 SUGIURA M, TANABE Y, SUGAWARA H, et al. Numerical simulations and measurements of the helicopter wake in ground effect[J]. Journal of Aircraft201654(1): 209-219.
4 BARDERA MORA R, MATíAS GARCíA J C. Helic-opter rotor ground effect and frigate interaction inve-stigated by particle image velocimetry[J]. AIAA Journal202160(1): 129-143.
5 胡健平, 徐国华, 史勇杰, 等. 基于CFD-DEM耦合数值模拟的全尺寸直升机沙盲形成机理[J]. 航空学报202041(3): 123363.
  HU J P, XU G H, SHI Y J, et al. Formation mechanism of brownout in full-scale helicopter based on CFD-DEM couplings numerical simulation[J]. Acta Aeronautica et Astronautica Sinica202041(3): 123363 (in Chinese).
6 覃燕华, 朱清华, 邵松. 共轴双旋翼悬停地面效应气动特性分析[J]. 南京航空航天大学学报201547(2): 266-274.
  QIN Y H, ZHU Q H, SHAO S. Aerodynamic characteristics analysis for hovering coaxial rotors in ground effect[J]. Journal of Nanjing University of Aeronautics & Astronautics201547(2): 266-274 (in Chinese).
7 FRADENBURGH E A. The helicopter and the ground effect machine[J]. Journal of the American Helicopter Society19605(4): 24-33.
8 HAYDEN J S. The effect of the ground on helicopter hovering power required[C]∥ Proceedings of 32nd National Forum of the American Helicopter Society. 1976: 1-11.
9 LEE T E, LEISHMAN J G, RAMASAMY M. Fluid dynamics of interacting blade tip vortices with a ground plane[J]. Journal of the American Helicopter Society201055(2): 22005-2200516.
10 NATHAN N D, GREEN R B. The flow around a model helicopter main rotor in ground effect[J]. Experiments in Fluids201252(1): 151-166.
11 SILWAL L, BHAGWAT M, RAGHAV V. Aerodynamic interactions of counter-rotating coaxial rotors hovering in ground effect[J]. Journal of Aircraft202259(6): 1416-1425.
12 辛冀, 陈仁良, 李攀. 地面效应中垂直起降状态旋翼的气动特性计算[J]. 南京航空航天大学学报201446(3): 433-442.
  XIN J, CHEN R L, LI P. Aerodynamics characteristics prediction for axial flying rotor in ground effect[J]. Journal of Nanjing University of Aeronautics & Astronautics201446(3): 433-442 (in Chinese).
13 谭剑锋, 周天熠, 王畅, 等. 旋翼地面效应的气动建模与特性[J]. 航空学报201940(6): 122602.
  TAN J F, ZHOU T Y, WANG C, et al. Aerodynamic model and characteristics of rotor in ground effect[J]. Acta Aeronautica et Astronautica Sinica201940(6): 122602 (in Chinese).
14 PASQUALI C, GENNARETTI M, BERNARDINI G, et al. State-space dynamic inflow modelling for hovering rotors in fixed- and moving-ground effect[J]. Aerospace Science and Technology2023140: 108414.
15 康宁, 孙茂. 旋翼近地飞行时诱导速度的Navier-Stokes方程计算[J]. 空气动力学学报199816(2): 221-225.
  KANG N, SUN M. Navier-Stokes calculations of induced velocity of a rotor in forward flight with ground effects[J]. Acta Aerodynamica Sinica199816(2): 221-225 (in Chinese).
16 朱明勇, 招启军, 王博. 基于CFD和混合配平算法的直升机旋翼地面效应模拟[J]. 航空学报201637(8): 2539-2551.
  ZHU M Y, ZHAO Q J, WANG B. Simulation of helicopter rotor in ground effect based on CFD method and hybrid trim algorithm[J]. Acta Aeronautica et Astronautica Sinica201637(8): 2539-2551 (in Chinese).
17 叶靓, 招启军, 徐国华. 基于非结构嵌套网格方法的旋翼地面效应数值模拟[J]. 航空学报200930(5): 780-786.
  YE L, ZHAO Q J, XU G H. Numerical simulation on flowfield of rotor in ground effect based on unstructured embedded grid method[J]. Acta Aeronautica et Astronautica Sinica200930(5): 780-786 (in Chinese).
18 卢丛玲, 祁浩天, 徐国华, 等. 共轴刚性旋翼悬停状态地面效应气动特性[J]. 航空学报201940(12): 123055.
  LU C L, QI H T, XU G H, et al. Aerodynamic characteristics of hovering coaxial rigid rotor in ground effect[J]. Acta Aeronautica et Astronautica Sinica201940(12): 123055 (in Chinese).
19 HWANG J Y, CHOI J H, KWON O J. Assessment of S-76 rotor hover performance in ground effect using an unstructured mixed mesh method[C]∥ 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
20 SILVA P A S F, TSOUTSANIS P, ANTONIADIS A F. Numerical investigation of full helicopter with and without the ground effect[J]. Aerospace Science and Technology2022122: 107401.
21 SMITH B, LYRINTZIS A, INSTITUTE R P, et al. eVTOL rotor noise in ground effect[C]∥ Proceedings of the Vertical Flight Society 77th Annual Forum. 2021: 77?90.
22 ZHAO Q J, ZHAO G Q, WANG B, et al. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor[J]. Chinese Journal of Aeronautics201831(2): 214-224.
23 CHEN X, ZHANG K, ZHAO Q J, et al. Numerical analysis of rotor aeroacoustic characteristics during collective pitch aperiodic variation in hover[J]. Aerospace Science and Technology2022124: 107411.
24 招启军, 朱正, 原昕. 桨叶外形对共轴刚性旋翼悬停性能影响的CFD分析[J]. 南京航空航天大学学报201749(5): 653-661.
  ZHAO Q J, ZHU Z, YUAN X. CFD analyses on effects of blade shape on hover performance of coaxial rigid rotors[J]. Journal of Nanjing University of Aeronautics & Astronautics201749(5): 653-661 (in Chinese).
25 FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Mathematical and Physical Sciences1969264(1151): 321-342.
26 FARASSAT F. Linear acoustic formulas for calculation of rotating blade noise[J]. AIAA Journal198119(9): 1122-1130.
27 LIGHT J S. Tip vortex geometry of a hovering helicopter rotor in ground effect[J]. Journal of the American Helicopter Society199338(2): 34-42.
28 CHEESEMAN I C, BENNETT W E. The effect of the ground on a helicopter rotor in forward flight: ARC-RM-3021[R]. London: Annual Technical Report of the Aeronautical Research Council, 1955.
29 MINECK R E, GORTON S A. Steady and periodic pressure measurements on a generic helicopter fuselage model in the presence of a rotor: NASA/TM-2000-210286[R]. Hampton: NASA Langley Technical Report Server, 2000.
30 BOXWELL D A, SCHMITZ F H, SPLETTSTOESSER W R, et al. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations[J]. Journal of the American Helicopter Society198732(1): 3-12.
文章导航

/