基于LBM的结冰表面水滴撞击特性数值模拟
收稿日期: 2023-06-19
修回日期: 2023-07-16
录用日期: 2023-08-07
网络出版日期: 2023-08-24
基金资助
结冰与防除冰重点实验室开放课题(IADL20200101);航空科学基金(2018ZA53014);国家重大项目(GJXM92579)
Numerical simulation of water droplet impact characteristics on icing surfaces based on LBM
Received date: 2023-06-19
Revised date: 2023-07-16
Accepted date: 2023-08-07
Online published: 2023-08-24
Supported by
Open Fund of Key Laboratory of Icing and Anti/De-icing of China(IADL20200101);Aeronautic Science Foundation of China(2018ZA53014);National Key Project of China(GJXM92579)
在飞机结冰场景下,考虑复杂几何的水滴撞击特性的求解,提出了基于格子玻尔兹曼方法(LBM)的水滴撞击特性求解方法。首先,从动理学理论的多组分格子玻尔兹曼模型出发,通过几个合理的假设,提出了以单相多组分的方式求解空气、水滴的混合流场,把气相水即等效水滴的运动特性近似为水滴的运动特性;然后,考虑空气、等效水滴流场的物理特性与假设,建立流场计算模型;最后,基于计算模型,分别计算圆柱和NACA0012的混合绕流流场,求解水滴撞击特性及其水滴收集系数分布,与文献数据对比良好。研究结果表明:提出的计算方法及计算模型可以有效模拟等效水滴在结冰表面的水滴撞击和收集特性,初步验证了模型的可行性。
石达志 , 桑为民 , 李世杰 , 安博 . 基于LBM的结冰表面水滴撞击特性数值模拟[J]. 航空学报, 2023 , 44(S2) : 729192 -729192 . DOI: 10.7527/S1000-6893.2023.29192
In the aircraft icing scenario, a method for solving the water droplet impact characteristics considering the complex geometry is proposed, utilizing the Lattice Boltzmann Method (LBM) method. Firstly, starting from the multi-component lattice Boltzmann model of kinetic theory, the mixed flow field of air and water droplets is proposed to be solved in a single-phase multi-component manner by approximating the motion characteristics of gas-phase water, i.e., equivalent water droplets, to those of water droplets through several reasonable assumptions. And then, considering the physical properties and assumptions of air and equivalent water droplet flow fields, a flow field calculation model is established. Finally, based on the calculation model, the mixed bypass flow fields of a cylinder and NACA0012 are calculated independently, and the water droplet impact characteristics and their droplet collection coefficient distributions are solved, showing good agreement when compared with data from literature. The results show that the proposed calculation method and computational model can effectively simulate the droplet impact and collection characteristics of equivalent water droplets on the icing surface, and the feasibility of the model is initially verified.
1 | 朱春玲, 朱程香. 飞机结冰及其防护[M]. 北京: 科学出版社, 2015: 25-28. |
ZHU C L, ZHU C X. Aircraft icing and its protection[M]. Beijing: Science Press, 2015: 25-28 (in Chinese). | |
2 | 林贵平, 卜雪琴, 申晓斌. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016: 50-56. |
LIN G P, BU X Q, SHEN X B. Aircraft icing and anti-icing technology[M]. Beijing: Beihang University Press, 2016: 50-56 (in Chinese). | |
3 | 周志宏, 易贤, 桂业伟, 等. 水滴撞击特性的高效计算方法[J]. 空气动力学学报, 2014, 32(5): 712-716. |
ZHOU Z H, YI X, GUI Y W, et al. An efficient method to simulate water droplet trajectory and impingement[J]. Acta Aerodynamica Sinica, 2014, 32(5): 712-716 (in Chinese). | |
4 | 杨倩, 常士楠, 袁修干. 水滴撞击特性的数值计算方法研究[J]. 航空学报, 2002, 23(2): 173-176. |
YANG Q, CHANG S N, YUAN X G. Study on numerical method for determining the droplet trajectories[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(2): 173-176 (in Chinese). | |
5 | 申晓斌, 赵文朝, 林贵平, 等. 飞机结冰中水滴撞击特性的欧拉法准确性分析[J]. 北京航空航天大学学报, 2023, 49(8): 1912-1921. |
SHEN X B, ZHAO W Z, LIN G P, et al. Accuracy analysis of Eulerian method for droplet impingement characteristics under aircraft icing conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(8): 1912-1921 (in Chinese). | |
6 | 陈希, 招启军. 考虑遮蔽区影响的旋翼三维水滴撞击特性计算新方法[J]. 航空学报, 2017, 38(6): 120745. |
CHEN X, ZHAO Q J. New method for predicting 3-D water droplet impingement on rotor considering influence of shadow zone[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120745 (in Chinese). | |
7 | 陈浩, 袁先旭, 王田天, 等. 国家数值风洞(NNW)工程中的黏性自适应笛卡尔网格方法研究进展[J]. 航空学报, 2021, 42(9): 625732. |
CHEN H, YUAN X X, WANG T T, et al. Advances in viscous adaptive Cartesian grid methodology of NNW Project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625732 (in Chinese). | |
8 | 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009: 7-10. |
GUO Z L, ZHENG C G. Theory and applications of lattice Boltzmann method[M]. Beijing: Science Press, 2009: 7-10 (in Chinese). | |
9 | BAO J, SCHAEFER L. Lattice Boltzmann equation model for multi-component multi-phase flow with high density ratios[J]. Applied Mathematical Modelling, 2013, 37(4): 1860-1871. |
10 | YU D Z, MEI R W, LUO L S, et al. Viscous flow computations with the method of lattice Boltzmann equation[J]. Progress in Aerospace Sciences, 2003, 39(5): 329-367. |
11 | SETA T, KONO K, MARTINEZ D, et al. Lattice Boltzmann scheme for simulating two-phase flows[J]. JSME International Journal Series B-Fluids and Thermal Engineering, 2000, 43(2): 305-313. |
12 | ZHENG S F, EIMANN F, PHILIPP C, et al. Single droplet condensation in presence of non-condensable gas by a multi-component multi-phase thermal lattice Boltzmann model[J]. International Journal of Heat and Mass Transfer, 2019, 139: 254-268. |
13 | JIANG F, HU C H. Numerical simulation of a rising CO2 droplet in the initial accelerating stage by a multiphase lattice Boltzmann method[J]. Applied Ocean Research, 2014, 45: 1-9. |
14 | MATSUYAMA T, ABE T, YAMAMOTO H. Lattice Boltzmann method study of Rayleigh instability of a charged droplet[J]. Advanced Powder Technology, 2007, 18(1): 93-104. |
15 | GUO Q, CHENG P. Direct numerical simulations of sessile droplet evaporation on a heated horizontal surface surrounded by moist air[J]. International Journal of Heat and Mass Transfer, 2019, 134: 828-841. |
16 | GARCIA P J. Lattice Boltzmann approach for the modeling and simulation of water droplets impact and freezing[D]. Montréal:Polytechnique Montréal, 2020: 60-75. |
17 | 刘飞. 水和甲醇在二维受限下相变的分子动力学模拟研究[D]. 合肥: 中国科学技术大学, 2011: 15-16. |
LIU F. Molecular dynamics simulation of transformation of limited water and methanol in the two-dimensional[D]. Hefei: University of Science and Technology of China, 2011: 15-16 (in Chinese). | |
18 | 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009: 215-224. |
HE Y L, WANG Y, LI Q. Lattice Boltzmann method: Theory and applications[M]. Beijing: Science Press, 2009: 215-224 (in Chinese). | |
19 | SUCCI S. The lattice Boltzmann equation for fluid dynamics and beyond[M]. Oxford: Clarendon Press, 2001: 20-50. |
20 | 吴孟龙, 常士楠, 冷梦尧, 等. 基于欧拉法模拟旋转帽罩水滴撞击特性[J]. 北京航空航天大学学报, 2014, 40(9): 1263-1267. |
WU M L, CHANG S N, LENG M Y, et al. Simulation of droplet impingement characteristics of spinner based on Eulerian method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9): 1263-1267 (in Chinese). | |
21 | TONG Z X, HE Y L, CHEN L, et al. A multi-component lattice Boltzmann method in consistent with Stefan-Maxwell equations: Derivation, validation and application in porous medium[J]. Computers & Fluids, 2014, 105: 155-165. |
22 | QIAN Y H, D'HUMIèRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters (EPL), 1992, 17(6): 479-484. |
23 | LUO L S, GIRIMAJI S S. Theory of the lattice Boltzmann method: Two-fluid model for binary mixtures[J]. Physical Review E, 2003, 67(3): 036302. |
24 | LI C W, ZHAO Y C, AI D H, et al. Multi-component LBM-LES model of the air and methane flow in tunnels and its validation[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 553: 124279. |
25 | MCCRACKEN M E, ABRAHAM J. Lattice Boltzmann methods for binary mixtures with different molecular weights[J]. Physical Review E, 2005, 71(4): 046704. |
26 | GUO Z L, ZHENG C G, SHI B C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics, 2002, 11(4): 366-374. |
27 | MEI R W, LUO L S, SHYY W. An accurate curved boundary treatment in the lattice Boltzmann method[J]. Journal of Computational Physics, 1999, 155(2): 307-330. |
28 | 安博, 桑为民. 基于不同网格结构的LBM算法研究[J]. 力学学报, 2013, 45(5): 699-706. |
AN B, SANG W M. The numerical study of lattice Boltzmann method based on different grid structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 699-706 (in Chinese). | |
29 | AN B, BERGADà J M, MELLIBOVSKY F, et al. New applications of numerical simulation based on lattice Boltzmann method at high Reynolds numbers[J]. Computers & Mathematics with Applications, 2020, 79(6): 1718-1741. |
30 | 陈金瓶. 二维圆柱结冰的冰风洞试验研究及水滴撞击特性计算[D]. 南京: 南京航空航天大学, 2013: 47-49. |
CHEN J P. Experimental investigation in icing tunnel and numeration of water droplets impact characteristics about cylinder[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 47-49 (in Chinese). | |
31 | 姚若鹏. 翼型的结冰数值模拟及相关控制研究[D]. 南京: 南京航空航天大学, 2012: 30-31. |
YAO R P. The numerical simulation of ice accretion on airfoil and control research[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 30-31 (in Chinese). | |
32 | 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007: 95-112. |
YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang: China Aerodynamics Research and Development Center, 2007: 95-112 (in Chinese). |
/
〈 |
|
〉 |