流体力学与飞行力学

基于贝叶斯框架的旋翼气动力数据融合

  • 杨华 ,
  • 陈树生 ,
  • 高正红 ,
  • 姜权峰 ,
  • 张伟
展开
  • 西北工业大学 航空学院,西安 710072
.E-mail: sshengchen@nwpu.edu.cn

收稿日期: 2023-05-05

  修回日期: 2023-06-19

  录用日期: 2023-08-13

  网络出版日期: 2023-08-24

基金资助

中国科协青年人才托举工程(2022QNRC001)

Rotor aerodynamic data fusion based on Bayesian framework

  • Hua YANG ,
  • Shusheng CHEN ,
  • Zhenghong GAO ,
  • Quanfeng JIANG ,
  • Wei ZHANG
Expand
  • School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China

Received date: 2023-05-05

  Revised date: 2023-06-19

  Accepted date: 2023-08-13

  Online published: 2023-08-24

Supported by

Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)

摘要

由于气动环境的复杂性,旋翼在气动评估中存在较多不确定性且对旋翼性能影响较大。当前旋翼气动评估方法不能考虑气动数据不确定性,本文将数据融合技术应用于旋翼气动预测以在记及某些不确定因素影响的条件下,获得具有更高可信度的气动力分布及置信区间,为进一步开展旋翼气动数据的不确定度分析及工程应用奠定基础。基于不同来源的气动力数据均为正态分布的独立随机变量这一假设,将分布气动数据和测量值之间的关系作为融合准则,以实现最佳匹配测量值为目标,采用贝叶斯估计求解融合数据的最大后验概率分布,从而构建一种基于贝叶斯框架的气动数据融合方法。以UH-60A旋翼及Caradonna-Tung旋翼为例,采用所提方法进行不同来源气动数据的融合,对融合结果的估计方差与预测误差进行对比分析。结果表明,首先,所提方法对于输入数据的来源无特殊要求,能够给出融合结果的置信区间并降低不同来源数据的估计方差,基于此结果后续可进行不确定度分析与研究;其次,融合所得结果并不局限于不同来源数据之间,扩大了数据覆盖范围;最后,融合所得结果相比于单一数据来源更符合物理规律。

本文引用格式

杨华 , 陈树生 , 高正红 , 姜权峰 , 张伟 . 基于贝叶斯框架的旋翼气动力数据融合[J]. 航空学报, 2024 , 45(8) : 128960 -128960 . DOI: 10.7527/S1000-6893.2023.28960

Abstract

Due to the complexity of the aerodynamic environment, there are many uncertainties in the aerodynamic evaluation of rotor blades, which have a significant impact on their performance. The existing aerodynamic evaluation methods cannot take into account the uncertainty of aerodynamic data. This study applies the data fusion technology to the prediction of rotor blade aerodynamics. The aerodynamic force distribution and confidence intervals with higher credibility under the conditions of remembering certain uncertain factors are obtained, laying a foundation for further uncertainty analysis and engineering applications of rotor blade aerodynamic data. Based on the hypothesis that the aerodynamic force data from different sources are all normally distributed independent random variables, the relationship between the distributed aerodynamic data and measured values is used as the fusion criterion to achieve the best matching of the measured values. The Bayesian estimation is used to solve the maximum posterior probability distribution of the fused data, thus constructing an aerodynamic data fusion method based on the Bayesian framework. Using the UH-60A and Caradonna-Tung rotor blades as examples, the proposed method is used to fuse the aerodynamic data from different sources, and the estimation variance and prediction error of the fused results are analyzed and compared. The results show that firstly, the proposed method, without special requirements for the source of input data, can provide confidence intervals for fused results, and reduce the estimation variance of data from different sources. On this basis, uncertainty analysis can be conducted. Secondly, the fused results are not limited to data from different sources, and thus broaden the coverage of data. Finally, the fused results are more in line with physical laws than the data from a single source.

参考文献

1 招启军, 赵国庆, 王清, 等. 先进旋翼设计空气动力学[M]. 北京: 科学出版社, 2020.
  ZHAO Q J, ZHAO G Q, WANG Q, et al. Advanced rotor design aerodynamics[M]. Beijing: Science Press, 2020 (in Chinese).
2 何开锋, 钱炜祺, 汪清, 等. 数据融合技术在空气动力学研究中的应用[J]. 空气动力学学报201432(6): 777-782.
  HE K F, QIAN W Q, WANG Q, et al. Application of data fusion technique in aerodynamics studies[J]. Acta Aerodynamica Sinica201432(6): 777-782 (in Chinese).
3 王文正, 郑鹍鹏, 陈功, 等. 数据挖掘技术在飞行试验数据分析和气动参数辨识中的应用研究[J]. 空气动力学学报201634(6): 778-782.
  WANG W Z, ZHENG K P, CHEN G, et al. Application research of data-mining method to flight test data analysis and aerodynamic parameter identification[J]. Acta Aerodynamica Sinica201634(6): 778-782 (in Chinese).
4 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报202142(4): 524689.
  ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524689 (in Chinese).
5 何创新, 邓志文, 刘应征. 湍流数据同化技术及应用[J]. 航空学报202142(4): 524704.
  HE C X, DENG Z W, LIU Y Z. Turbulent flow data assimilation and its applications[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524704 (in Chinese).
6 SEVERANCE K, BREWSTER P, LAZOS B, et al. Wind tunnel data fusion and immersive visualization: A case study[C]∥Proceedings Visualization, 2001 VIS’01. Piscataway: IEEE Press, 2018.
7 LAMAR J E, OBARA C J, FISHER B D, et al. Flight, wind-tunnel, and computational fluid dynamics comparison for cranked arrow wing (F-16XL-1) at subsonic and transonic speeds[R]. Washington, D.C.: NASA, 2001.
8 BELYAEV M, BURNAEV E, KAPUSHEV E, et al. Building data fusion surrogate models for spacecraft aerodynamic problems with incomplete factorial design of experiments[J]. Advanced Materials Research20141016: 405-412.
9 RENGANATHAN S A, HARADA K, MAVRIS D N. Aerodynamic data fusion toward the digital twin paradigm[J]. AIAA Journal202058(9): 3902-3918.
10 王文正, 桂业伟, 何开锋, 等. 基于数学模型的气动力数据融合研究[J]. 空气动力学学报200927(5): 524-528.
  WANG W Z, GUI Y W, HE K F, et al. Aerodynamic data fusion technique exploration[J]. Acta Aerodynamica Sinica200927(5): 524-528 (in Chinese).
11 BOX G E P, TIAO G C. Bayesian inference in statistical analysis[M]. Hoboken: John Wiley & Sons, 1992.
12 STIGLER S M. Thomas bayes’s Bayesian inference[J]. Journal of the Royal Statistical Society Series A: Statistics in Society1982145(2): 250-258.
13 FRISTON K J, PENNY W, PHILLIPS C, et al. Classical and Bayesian inference in neuroimaging: Theory[J]. NeuroImage200216(2): 465-483.
14 AMINI A, KAMILOV U S, BOSTAN E, et al. Bayesian estimation for continuous-time sparse stochastic processes[J]. IEEE Transactions on Signal Processing201361(4): 907-920.
15 EMORY M, LARSSON J, IACCARINO G. Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures[J]. Physics of Fluids201325(11): 1155.
16 CALVETTI D, SOMERSALO E. Inverse problems: from regularization to Bayesian inference[J]. WIREs Computational Statistics201810(3): 1427.
17 LORBER P F, STAUTER R C, LANDGREBE A J. A comprehensive hover test of the airloads and airflow of an extensively instrumented model helicopter rotor[C]∥Proceedings of the 45th Annual Forum of the American Helicopter Society. 1989.
18 肖中云. 旋翼流场数值模拟方法研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007.
  XIAO Z Y. Investigation of computational modeling techniques for rotor flowfields[D]. Mianyang: China Aerodynamics Research and Development Center, 2007 (in Chinese).
19 PANG C, GAO Z H, YANG H, et al. An efficient grid assembling method in unsteady dynamic motion simulation using overset grid[J]. Aerospace Science and Technology2021110: 106450.
20 PANG C, YANG H, GAO Z H, et al. Enhanced adaptive mesh refinement method using advanced vortex identification sensors in wake flow[J]. Aerospace Science and Technology2021115: 106796.
21 TWEEDT D, CHIMA R, TURKEL E, et al. Preconditioning for numerical simulation of low Mach number three-dimensional viscous turbomachinery flows[C]∥Proceedings of the 28th Fluid Dynamics Conference. Reston : AIAA, 1997.
22 JOHN S, SIMON N. 直升机空气动力学基础[M]. 王建新,张璇子,吴冠桢, 译. 北京: 国防工业出版社, 2014.
  JOHN S, SIMON N. Basic helicopter aerodynamics[M]. WANG J X, ZHANG X Z, WU G Z, translated. Beijing: National Defense Industry Press, 2014 (in Chinese).
23 李春华. 时间准确自由尾迹方法建模及(倾转)旋翼气动特性分析[D]. 南京: 南京航空航天大学, 2007.
  LI C H. Modeling on time-accurate free wake method and investigation on aerodynamic characteristics of rotor and tiltrotor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese).
24 KRAL L, DONOVAN J, CAIN A, et al. Numerical simulation of synthetic jet actuators[C]∥Proceedings of the 4th Shear Flow Control Conference. Reston: AIAA, 1997.
文章导航

/