航空发动机高性能制造专栏

2D编织C/SiC孔边致密化结构多尺度混合模型与拉伸性能

  • 姜卓群 ,
  • 黄盛 ,
  • 王占学
展开
  • 西北工业大学 动力与能源学院,西安 710129
E-mail: hs@nwpu.edu.cn

收稿日期: 2023-03-16

  修回日期: 2023-04-10

  录用日期: 2023-06-18

  网络出版日期: 2023-08-24

基金资助

航空发动机及燃气轮机基础科学基金(2022-DC-I-002-001);中央高校基本科研业务费专项资金(D5000210125)

Multiscale hybrid modeling and tensile properties of 2D braided C/SiC with hole-edge densification structures

  • Zhuoqun JIANG ,
  • Sheng HUANG ,
  • Zhanxue WANG
Expand
  • School of Power and Energy,Northwestern Polytechnical University,Xi’??an 710129,China
E-mail: hs@nwpu.edu.cn

Received date: 2023-03-16

  Revised date: 2023-04-10

  Accepted date: 2023-06-18

  Online published: 2023-08-24

Supported by

Basic Science Foundation for Aeroengine and Gas Turbines(2022-DC-I-002-001);the Fundamental Research Funds for the Central Universities(D5000210125)

摘要

针对一种开孔 2D 编织 C/SiC复合材料在化学气相浸渗过程中出现的孔边致密化结构,提出了一种表征孔边致密化结构的建模方法。考虑孔隙的随机分布,建立了纤维束尺度代表体积元模型,实现了 2D 编织 C/SiC 复合材料等效弹性模量的计算。在此基础上,建立了具有孔边致密化结构的 2D 编织 C/SiC复合材料宏-细观组合模型。基于 3D hashin 失效准则与修正的Von Mises失效准则,建立了 2D 编织 C/SiC 复合材料的渐进损伤模型,模拟了其单轴拉伸应力-应变行为。通过与实验数据的对比分析,验证了模型的有效性。计算不同孔隙率、致密带半径以及孔径的开孔 2D 编织 C/SiC 复合材料拉伸强度并分析其影响规律。计算结果表明:随着孔隙率的增大,材料刚度与拉伸强度不断减小,当孔隙率从5%上升到20%时,抗拉强度降低26.05%;随着致密带半径的增加,材料刚度下降越缓慢,失效强度越大,当致密带半径从0 mm增大到0.75 mm时,抗拉强度提高14.17%;随着孔径增大,孔边应力集中效应增强,孔边损伤程度加剧,材料损伤越快,当孔径从0.5 mm增大到2 mm时,抗拉强度降低35.01%。

本文引用格式

姜卓群 , 黄盛 , 王占学 . 2D编织C/SiC孔边致密化结构多尺度混合模型与拉伸性能[J]. 航空学报, 2024 , 45(13) : 628713 -628713 . DOI: 10.7527/S1000-6893.2023.28713

Abstract

A modelling method is proposed to characterise the densification structure of the hole edges of 2D braided C/SiC composites during Chemical Vapour Infiltration (CVI). A Representative Volumetric Element (RVE) model, taking into account the random distribution of holes, is developed to calculate the equivalent elastic modulus of 2D braided C/SiC composites. On this basis, a macro-meso hybrid model of 2D braided C/SiC composites with a densified structure of the hole edge is developed. Based on the 3D hashin failure criterion and the modified Von Mises failure criterion, the progressive damage model of the 2D braided C/SiC composite is developed, and its uniaxial tensile stress-strain behaviour is simulated. The validity of the model is verified by comparison and analysis with experimental data. The tensile strength of the open-hole 2D braided C/SiC composites is calculated for different porosities, radii of the dense zone and hole diameters, and the effects are analysed. The results show that with the increase of porosity, the material stiffness and tensile strength decreased, when the porosity increased from 5% to 20%, the tensile strength decreased by 26.05%; with the increase of radius of dense zone, the material stiffness decreased more slowly and the failure strength increased, when the radius of dense zone increased from 0 mm to 0.75 mm, the tensile strength increased by 14.17%; with the increase of hole diameter, the hole edge stress concentration effect is enhanced, the degree of damage to the hole edge increased, the faster the material damage, when the hole diameter increases from 0.5 mm to 2 mm, the tensile strength decreased by 35.01%.

参考文献

1 刘大响. 一代新材料, 一代新型发动机: 航空发动机的发展趋势及其对材料的需求[J]. 材料工程201745(10): 1-5.
  LIU D X. One generation of new material, one generation of new type engine: Development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering201745(10): 1-5 (in Chinese).
2 TU Z C, MAO J K, HAN X S, et al. Prediction model for the anisotropic thermal conductivity of a 2.5-D braided ceramic matrix composite with thin-wall structure[J]. Applied Sciences20199(5): 875.
3 杜昆, 陈麒好, 孟宪龙, 等. 陶瓷基复合材料在航空发动机热端部件应用及热分析研究进展[J]. 推进技术202243(2): 113-131.
  DU K, CHEN Q H, MENG X L, et al. Advancement in application and thermal analysis of ceramic matrix composites in aeroengine hot components[J]. Journal of Propulsion Technology202243(2): 113-131 (in Chinese).
4 GAVALDA DIAZ O, AXINTE D A, BUTLER-SMITH P, et al. On understanding the microstructure of SiC/SiC Ceramic Matrix Composites (CMCs) after a material removal process[J]. Materials Science and Engineering: A2019743: 1-11.
5 TU Z C, MAO J K, HAN X S. Numerical study of film cooling over a flat plate with anisotropic thermal conductivity[J]. Applied Thermal Engineering2017111: 968-980.
6 ZHONG F Q, BROWN G L. Experimental study of multi-hole cooling for integrally-woven, ceramic matrix composite walls for gas turbine applications[J]. International Journal of Heat and Mass Transfer200952(3-4): 971-985.
7 YU H J, ZHOU X G, ZHANG W, et al. Mechanical properties of 3D KD-I SiCf/SiC composites with engineered fibre-matrix interfaces[J]. Composites Science and Technology201171: 699-704.
8 MEYER P, WAAS A M. Experimental results on the elevated temperature tensile response of SiC/SiC ceramic matrix notched composites[J]. Composites Part B: Engineering2018143: 269-281.
9 ABISSET E, DAGHIA F, LADEVèZE P. On the validation of a damage mesomodel for laminated composites by means of open-hole tensile tests on quasi-isotropic laminates[J]. Composites Part A: Applied Science and Manufacturing201142(10): 1515-1524.
10 ZHOU S, SUN Y, CHEN B Y, et al. Progressive damage simulation of open-hole composite laminates under compression based on different failure criteria[J]. Journal of Composite Materials201751(9): 1239-1251.
11 XIAO M L, ZHANG Y B, WANG Z H, et al. Tensile failure analysis and residual strength prediction of CFRP laminates with open hole[J]. Composites Part B: Engineering 2017126: 49-59.
12 WAN L, ISMAIL Y, SHENG Y, et al. Progressive failure analysis of CFRP composite laminates under uniaxial tension using a discrete element method[J]. Journal of Composite Materials202155(8): 1091-1108.
13 冉庆波, 肖鸿, 杨富鸿, 等. 含孔曲面自动铺丝轨迹规划算法[J]. 航空学报202243(9): 425602.
  RAN Q B, XIAO H, YANG F H, et al. Trajectory planning algorithm for automatic wire laying on perforated surface[J]. Acta Aeronautica et Astronautica Sinica202243(9): 425602 (in Chinese).
14 GAO X G, YU G Q, XUE J G, et al. Failure analysis of C/SiC composites plate with a hole by the PFA and DIC method[J]. Ceramics International201743(6): 5255-5266.
15 MEI H, ZHANG D, XIA J C, et al. The effect of hole defects on the oxidation behaviour of two-dimensional C/SiC composites[J]. Ceramics International201642(14): 15479-15484.
16 ZHANG X H, GAO H S, WEN Z X, et al. Tension-tension fatigue behaviour of 3D braided SiCf/SiC composite with film cooling holes at 1 350 ℃ in air[J]. Ceramics International202046(6): 7703-7710.
17 LIU Y S, HU C H, FENG W, et al. Microstructure and properties of diamond/SiC composites prepared by tape-casting and chemical vapor infiltration process[J]. Journal of the European Ceramic Society201434(15): 3489-3498.
18 VIGNOLES G L. Modeling of chemical vapor infiltration processes[M]∥ Advances in Composites Manufacturing and Process Design. Amsterdam: Elsevier, 2015: 415-458.
19 ZHANG J X, LIU Y S, CHENG L F, et al. Effect of a diffusion-enhancing hole on the densification of a thick-section 2D C/SiC composite[J]. Journal of the European Ceramic Society201939(15): 4609-4616.
20 王晶. LA-CVI法制备C/SiC陶瓷基复合材料的微结构设计与性能调控[D]. 西安: 西北工业大学, 2018: 91-93.
  WANG J. Microstructure design and performance control of C/SiC composites fabricated by LA-CVI process[D]. Xi’an: Northwestern Polytechnical University, 2018: 91-93 (in Chinese).
21 惠新育, 许英杰, 张卫红, 等. 平纹编织SiC/SiC复合材料多尺度建模及强度预测[J]. 复合材料学报201936(10): 2380-2388.
  HUI X Y, XU Y J, ZHANG W H, et al. Multi-scale modeling and strength prediction of plain woven SiC/SiC composites[J]. Acta Materiae Compositae Sinica201936(10): 2380-2388 (in Chinese).
22 王奇志, 林慧星, 许赟泉. 二维编织陶瓷基复合材料偏轴拉伸力学性能预测[J]. 复合材料学报201835(12): 3423-3432.
  WANG Q Z, LIN H X, XU Y Q. Mechanical properties prediction of 2D braided ceramic matrix composites under off-axial tension[J]. Acta Materiae Compositae Sinica201835(12): 3423-3432 (in Chinese).
23 张锦, 张乃恭. 新型复合材料力学机理及其应用[M]. 北京: 北京航空航天大学出版社, 1993: 231.
  ZHANG J, ZHANG N G. Mechanical mechanism and application of new composite materials[M]. Beijing: Beihang University Press, 1993: 231 (in Chinese).
24 WANG J, CHENG L F, LIU Y S, et al. Enhanced densification and mechanical properties of carbon fiber reinforced silicon carbide matrix composites via laser machining aided chemical vapor infiltration[J]. Ceramics International201743(14): 11538-11541.
25 LEMAITRE J, DESMORAT R. Engineering damage mechanics: Ductile, creep, fatigue and brittle failures[M]. Berlin: Springer, 2005.
26 HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics198047(2): 329-334.
27 HA S K, JIN K K, HUANG Y C. Micro-mechanics of failure (MMF) for continuous fiber reinforced composites[J]. Journal of Composite Materials200842(18): 1873-1895.
28 KADDOUR A, HINTON M. Input data for test cases used in benchmarking triaxial failure theories of composites[J]. Journal of Composite Materials201246(19-20): 2295-2312.
29 HUANG Y C, XU L, HA S K. Prediction of three-dimensional composite laminate response using micromechanics of failure[J]. Journal of Composite Materials201246(19-20): 2431-2442.
30 RAGHAVA R, CADDELL R M, YEH G S Y. The macroscopic yield behaviour of polymers[J]. Journal of Materials Science19738(2): 225-232.
31 HOLLISTER S J, KIKUCHI N. A comparison of homogenization and standard mechanics analyses for periodic porous composites[J]. Computational Mechanics199210(2): 73-95.
文章导航

/