两级入轨航天器级间分离姿态精确控制
收稿日期: 2023-07-05
修回日期: 2023-07-24
录用日期: 2023-08-11
网络出版日期: 2023-08-18
基金资助
国家自然科学基金(92371109);中国科协青年人才托举工程(2022QNRC001)
Precise control of interstage separation attitude of two⁃stage⁃to⁃orbit vehicle
Received date: 2023-07-05
Revised date: 2023-07-24
Accepted date: 2023-08-11
Online published: 2023-08-18
Supported by
National Natural Science Foundation of China(92371109);Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)
两级入轨航天器(TSTO)级间分离过程中对轨道级、助推级的姿态精确控制尤为重要。数值模拟可以较为准确地预测级间分离这种飞行器多体分离问题,运用非结构嵌套网格技术及双时间步法耦合流动控制方程、刚体运动方程求解TSTO在攻角-2°、马赫数6、海拔高度30 km的级间分离过程,发展了一种优化轨道级、助推级在级间分离过程的运动姿态的技术。该技术通过松弛迭代法提取轨道级、助推级的无舵偏气动力数据,基于无舵偏气动力数据设计气动舵面、燃气舵所需要提供的俯仰力矩,使得轨道级、助推级的运动姿态更加接近设计目标。数值模拟结果表明,TSTO在分离过程中两级之间会存在强烈的气动干扰,严重影响两级的姿态控制,发展的技术可为TSTO分离过程中轨道级、助推级的舵面运动、燃气舵工作状态设计提供参考,提高TSTO级间分离的效率、安全性。
姜权峰 , 陈树生 , 杨华 , 李祚泰 , 高正红 . 两级入轨航天器级间分离姿态精确控制[J]. 航空学报, 2024 , 45(13) : 129270 -129270 . DOI: 10.7527/S1000-6893.2023.29270
Precise attitude control of the orbiter and the booster is particularly important for the interstage separation of the Two-Stage-to-Orbit (TSTO) vehicle. Numerical simulation can accurately predict interstage separation, which is a multi-body separation problem for aircraft. We use the unstructured overset grid technique and the dual-time method to couple the fluid control equations and the rigid body motion equations to solve the interstage separation process of the TSTO at an angle of attack of -2°, Mach number 6, and an altitude of 30 km, and develop a technique to optimise the attitude of the orbiter and the booster during the interstage separation process. The technique obtains the aerodynamic data of the orbiter and the booster without rudder deflection angle with the relaxation iteration method and, based on these data, designs the pitching moments to be provided by the aerodynamic and gas rudders to bring the kinematic attitudes of the orbiter and the booster closer to the design target. The numerical simulation results show that strong aerodynamic interference will exist between the two stages of the TSTO during the separation process, seriously affecting the attitude control of the two stages. The technology developed can provide a reference for the design of the aerodynamic rudder motion and gas rudder operating state of the orbiter and the booster during the separation process of the TSTO, so as to improve the efficiency and safety of the interstage separation of the TSTO.
1 | 佘文学, 刘晓鹏, 刘凯. 桑格尔空天飞行器技术途径分析与思考[J]. 火箭推进, 2021, 47(6): 11-20. |
SHE W X, LIU X P, LIU K. Analysis and thinking on technical approach of Sanger aerospace vehicle[J]. Journal of Rocket Propulsion, 2021, 47(6): 11-20 (in Chinese). | |
2 | 王长青. 空天飞行技术创新与发展展望[J]. 宇航学报, 2021, 42(7): 807-819. |
WANG C Q. Technological innovation and development prospect of aerospace vehicle[J]. Journal of Astronautics, 2021, 42(7): 807-819 (in Chinese). | |
3 | 王亚军, 何国强, 秦飞, 等. 火箭冲压组合动力研究进展[J]. 宇航学报, 2019, 40(10): 1125-1133. |
WANG Y J, HE G Q, QIN F, et al. Research progress of rocket based combined cycle engines[J]. Journal of Astronautics, 2019, 40(10): 1125-1133 (in Chinese). | |
4 | 苟建军, 肖爽, 胡嘉欣, 等. 高超声速飞行器气动热耗散、输运及转换技术研究进展[J]. 宇航学报, 2022, 43(8): 983-999. |
GOU J J, XIAO S, HU J X, et al. Research progress of aerodynamic heat dissipation,transport and conversion technologies of hypersonic vehicles[J]. Journal of Astronautics, 2022, 43(8): 983-999 (in Chinese). | |
5 | WEINGATNER S. The reference concept of the German hypersonics technology program[C]∥5th International Aerospace Planes and Hypersonics Technologies Conference. Reston: AIAA, 1993. |
6 | 甘才俊, 石伟龙, 李晓辉, 等. 多体模型分离流动的典型气动干扰形式研究[J]. 推进技术, 2023, 44(7): 166-172. |
GAN C J, SHI W L, LI X H, et al. Aero-interference typical patterns for multi-bodies spacious separation flow[J]. Journal of Propulsion Technology, 2023, 44(7): 166-172 (in Chinese). | |
7 | 解福田, 张庆虎, 林敬周, 等. 基于PSP/TSP测量的TSTO标模级间分离气动干扰特性试验分析[J]. 空气动力学学报, 2023, 41(5): 98-108. |
XIE F T, ZHANG Q H, LIN J Z, et al. Experimental analysis of interference characteristics of TSTO stage separation based on PSP/TSP measurement[J]. Acta Aerodynamica Sinica, 2023, 41(5): 98-108 (in Chinese). | |
8 | 林敬周, 解福田, 钟俊, 等. 高超声速风洞双体同步分离捕获轨迹试验技术[J]. 空气动力学学报, 2023, 41(5): 77-86. |
LIN J Z, XIE F T, ZHONG J, et al. Dual-body synchronous captive trajectory test technique in hypersonic wind tunnel[J]. Acta Aerodynamica Sinica, 2023, 41(5): 77-86 (in Chinese). | |
9 | 龚小权, 贾洪印, 赵辉, 等. TSTO级间分离气动特性数值仿真分析[J]. 空气动力学学报, 2023, 41(5): 109-118. |
GONG X Q, JIA H Y, ZHAO H, et al. Numerical simulation analysis on aerodynamic characteristics of TSTO interstage separation[J]. Acta Aerodynamica Sinica, 2023, 41(5): 109-118 (in Chinese). | |
10 | 王粤, 汪运鹏, 王春, 等. 一种并联两级入轨飞行器纵向分离方案的数值研究[J]. 航空学报, 2023, 44(11): 127634. |
WANG Y, WANG Y P, WANG C, et al. Numerical study of longitudinal stage separation for parallel-staged two-stage-to-orbit vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 127634 (in Chinese). | |
11 | 王粤, 汪运鹏, 姜宗林. 激波风洞TSTO纵向级间分离试验技术研究[J]. 航空学报, 2023, 44(20): 128126. |
WANG Y, WANG Y P, JIANG Z L. Research on the test technology of longitudinal stage separation for TSTO in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 128126 (in Chinese). | |
12 | WANG Y, WANG Y P, JIANG Z L. Unsteady interaction mechanism of transverse stage separation in hypersonic flow for a two-stage-to-orbit vehicle[J]. Physics of Fluids, 2023, 35(5): 056120. |
13 | WANG Y, WANG Y P, JIANG Z L. Numerical investigation of aerodynamic separation schemes for two-stage-to-orbit-like two-body system[J]. Aerospace Science and Technology, 2022, 131: 107995. |
14 | WANG Y, WANG Y P, WANG C, et al. Numerical investigation on longitudinal stage separation of spiked two-stage-to-orbit vehicle[J]. Journal of Spacecraft and Rockets, 2022, 60(1): 215-229. |
15 | LIU Y, QIAN Z S, LU W B, et al. Numerical investigation on the safe stage-separation mode for a TSTO vehicle[J]. Aerospace Science and Technology, 2020, 107: 106349. |
16 | 范孝华, 张庆虎, 罗磊, 等. TSTO并联分离激波/边界层干扰流动特性分析[J]. 空气动力学学报, 2023, 41(5): 87-97. |
FAN X H, ZHANG Q H, LUO L, et al. Flow-field characteristics analyses on shock-wave/boundary-layer interaction of TSTO parallel separation[J]. Acta Aerodynamica Sinica, 2023, 41(5): 87-97 (in Chinese). | |
17 | CHENG J M, CHEN R Q, QIU R F, et al. Aerothermodynamic study of two-stage-to-orbit system composed of wide-speed-range vehicle and rocket[J]. Acta Astronautica, 2021, 183: 330-345. |
18 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
19 | ROE P L. Approximate Riemann solvers,parameter vectors,and difference schemes[J]. Journal of Computational Physics, 1997, 135(2): 250-258. |
20 | JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25(7): 929-935. |
21 | HEIM E R. CFD wing/pylon/finned store mutual interference wind tunnel experiment[R]. Air Force Test Center: Arnold Engineering Development Center, 1991. |
22 | 袁亚. 带头罩折叠翼飞行器多体分离数值模拟[D]. 北京: 中国航天科技集团公司第一研究院, 2017: 20-24. |
YUAN Y. Numerical simulation of multi-body separation of vehicle with shroud and folded wing[D]. Beijing: China Academy of Launch Vehicle Technology, 2017: 20-24 (in Chinese). | |
23 | OPALKA K O. Force tests of the hypersonic ballistic standard models HB-1 and HB-2[M]. Maryland: Ballistic Research Laboratories, 1966. |
24 | 胡守超, 庄宇, 李贤, 等. 高超声速气动热标模HyHERM-Ⅰ试验[J]. 航空学报, 2022, 43(S2): 727804. |
HU S C, ZHUANG Y, LI X, et al. Hyherm-ⅰ test of hypersonic aerodynamic thermal standard model[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 727804 (in Chinese). | |
25 | 张婷婷, 叶瑞, 姜维, 等. 高超声速风洞HSCM系列标准模型气动力实验数据[J]. 气体物理, 2021, 6(4): 57-65. |
ZHANG T T, YE R, JIANG W, et al. Aerodynamic test data of HSCM calibration models in hypersonic wind tunnel[J]. Physics of Gases, 2021, 6(4): 57-65 (in Chinese). | |
26 | 中国人民解放军总装备部. 高超声速风洞气动力试验方法: [S]. 北京: 总装备部军标出版发行部, 2002. |
General Armament Department. GJB4399-2002 aerodynamics tests method of hypersonic wind tunnel[J]. Beijing: General Armament Department Military Standard Publishing Department, 2002 (in Chinese). | |
27 | 陈树生, 张兆康, 李金平, 等. 一种宽速域乘波三角翼气动布局设计[J]. 航空学报, 2023, 44(23): 128441. |
CHEN S S, ZHANG Z K, LI J P, et al. Wide-speed aerodynamic layout adopting waverider-delta wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 128441 (in Chinese). | |
28 | FENG C, CHEN S S, YUAN W, et al. A wide-speed-range aerodynamic configuration by adopting wave-riding-strake wing[J]. Acta Astronautica, 2023, 202: 442-452. |
29 | 唐伟, 刘深深, 余雷, 等. 用于级间分离研究的TBCC动力TSTO气动布局概念设计[J]. 空气动力学学报, 2019, 37(5): 698-704,721. |
TANG W, LIU S S, YU L, et al. Conceptual design of TBCC based TSTO configurations for stage seperation investigation[J]. Acta Aerodynamica Sinica, 2019, 37(5): 698-704, 721 (in Chinese). | |
30 | 李绍磊, 郑建靖, 尚萌萌. 基于非结构网格的飞行器多体分离数值模拟[J]. 计算机应用, 2016, 36(6): 1741-1744,1756. |
LI S L, ZHENG J J, SHANG M M. Numerical simulation of flight vehicle multi-body separation based on unstructured mesh[J]. Journal of Computer Applications, 2016, 36(6): 1741-1744,1756 (in Chinese). | |
31 | 靳晨晖, 王刚, 王泽汉. 子母弹多体分离过程的非定常CFD/RBD数值仿真[J]. 气体物理, 2018, 3(4): 47-63. |
JIN C H, WANG G, WANG Z H. Numerical simulation of unsteady CFD/RBD in multibody separation process of cluster munitions[J]. Physics of Gases, 2018, 3(4): 47-63 (in Chinese). | |
32 | 袁亚, 李冬, 马友林, 等. 基于非结构嵌套网格的低空大动压头罩分离数值模拟[J]. 导弹与航天运载技术, 2019(5): 17-22. |
YUAN Y, LI D, MA Y L, et al. Numerical simulation of shroud separation with overset unstructured grid in low altitude with high dynamic pressure[J]. Missiles and Space Vehicles, 2019(5): 17-22 (in Chinese). | |
33 | LEMMI G, GIACCHERINI S, MARCONCINI M,et al. Application of an overset grid method for the performance analysis of flapping airfoils[J]. Journal of Physics: Conference Series, 2022, 2385(1): 012121. |
34 | XIAO T H, ZHI H L, DENG S H, et al. Enhancement on parallel unstructured overset grid method for complex aerospace engineering applications[J]. Chinese Journal of Aeronautics, 2023, 36(1): 115-138. |
35 | 孔倩. 松弛迭代算法的加速方法研究[D]. 成都: 电子科技大学, 2019: 1-3. |
KONG Q. A study of accelerated technology of relaxation iterative algorithm[D].Chengdu: University of Electronic Science and Technology of China, 2019: 1-3 (in Chinese) . | |
36 | 陈静, 吕玉超, 王利敏. 一种快速收敛的动态松弛协同优化方法[J]. 系统仿真学报, 2018, 30(1): 96-104. |
CHEN J, Lü Y C, WANG L M. Dynamic relaxation cooperative optimization method with fast convergence[J]. Journal of System Simulation, 2018, 30(1): 96-104 (in Chinese). |
/
〈 |
|
〉 |