固体力学与飞行器总体设计

基于高速冲击异质惯性场的金属各向异性动态力学属性虚场表征法

  • 付佳伟 ,
  • 杨泽斐 ,
  • 蔡亚辉 ,
  • 聂祥樊 ,
  • 齐乐华
展开
  • 1.西北工业大学 深圳研究院,深圳 518063
    2.西北工业大学 机电学院,西安 710072 3.空军工程大学 航空等离子体动力学国家级实验室,西安 710038
.E-mail: jiawei.fu@nwpu.edu.cn

收稿日期: 2023-06-26

  修回日期: 2023-07-12

  录用日期: 2023-08-09

  网络出版日期: 2023-08-18

基金资助

国家自然科学基金(52175365);广东省基础与应用基础研究基金(2024A1515011868);陕西省高层次人才引进计划青年项目(00121)

Identification method for anisotropic and high strain rate plasticity of sheet metals based on heterogeneous highspeed inertial impact and principle of virtual work

  • Jiawei FU ,
  • Zefei YANG ,
  • Yahui CAI ,
  • Xiangfan NIE ,
  • Lehua QI
Expand
  • 1.Research & Development Institute of Northwestern Polytechnical University in Shenzhen,Shenzhen 518063,China
    2.School of Mechanical Engineering,Northwestern Polytechnical University,Xi’an 710072,China
    3.Science and Technology on Plasma Dynamics Lab,Air Force Engineering University,Xi’an 710038,China

Received date: 2023-06-26

  Revised date: 2023-07-12

  Accepted date: 2023-08-09

  Online published: 2023-08-18

Supported by

National Natural Science Foundation of China(52175365);Guangdong Basic and Applied Basic Research Foundation(2024A1515011868);The Young Talents Plan in Shaanxi Province of China(00121)

摘要

2024变形铝合金等轻质高强金属板材作为重要结构材料广泛应用于航空航天工业领域,其轧制生产过程引起的塑性各向异性和冲击载荷下表现出的应变率相关性显著影响着板材的变形行为,加大结构部件精确成形和极端工况服役行为准确预测的难度。当前,材料动态力学属性表征主要依赖于经典霍普金森压力杆法,该方法基于均匀变形和一维应力波假设前提,对于宽应变率范围各向异性动态力学属性,存在试验数量大、耦合效应表征难、部分参数难提取等缺点。针对此,提出一种基于高速冲击异形件诱导异质惯性场的金属各向异性-率相关塑性参数虚场同步表征新方法。通过设计开展双缺口异形试件高速冲击虚拟试验,实现试件非均匀应力应变状态调控,获取其惯性加速阶段的异质状态应变场、应变率场及加速度场;基于虚功原理构建动态本构参数识别算法,分析不同边界条件、冲击加载模式等状态条件变量对参数表征精度的影响规律,从单次冲击异质惯性场数据中实现试件动态各向异性-率相关塑性属性多参数一次准确表征,最大程度减少试验数量,简化测试过程,突破常规动态测试方法所受条件限制。

本文引用格式

付佳伟 , 杨泽斐 , 蔡亚辉 , 聂祥樊 , 齐乐华 . 基于高速冲击异质惯性场的金属各向异性动态力学属性虚场表征法[J]. 航空学报, 2024 , 45(10) : 229221 -229221 . DOI: 10.7527/S1000-6893.2023.29221

Abstract

High-strength lightweight alloy sheets. such as 2024 wrought aluminum alloy sheets, are widely applied in aeronautic and astronautic industries as essential structural materials. The anisotropic plasticity induced by the rolling process and the strain rate sensitivity under impact loadings significantly affect their dynamic deformation behaviors, which make it difficult to accurately predict the material response during complex forming process or under extreme service conditions. Currently, the characterization of dynamic mechanical properties of materials mainly relies on the classical split Hopkinson pressure bar. It is based on the assumption of uniform deformation and one-dimensional stress wave propagation, which lead to the shortcomings of large number of required tests for comprehensive anisotropic plasticity, difficulty in characterizing coupling effect as well as in extracting parameters at early yielding stage. In this paper, a new method for the simultaneous characterization of the anisotropic and strain rate-related plasticity parameters is proposed based on the heterogeneous inertial fields obtained from the highspeed impact of a nonuniform specimen and the virtual fields method. Specifically, by designing and conducting the virtual highspeed impact test of a double-notched specimen, the comprehensive stress-strain state of the specimen can be manipulated and the simulated heterogeneous strain, strain rate and acceleration field data at the inertial acceleration stage obtained. Then, the dynamic constitutive parameter identification algorithm is developed based on the principle of virtual work, using which the multiple anisotropic and strain rate-related dynamic plasticity parameters of the specimen are accurately characterized at the same time from the single virtual heterogeneous impact test. Also, the influence of the state variables such as the boundary conditions, impact loading modes on the identification accuracy is analyzed. The proposed method shows its merits in minimizing the required tests for identifying such comprehensive constitutive models and releasing the limitations suffered by conventional dynamic testing methods.

参考文献

1 冯振宇, 傅博宇, 解江, 等. 爆炸冲击载荷下机身壁板的动态响应[J]. 航空学报202243(6): 525513.
  FENG Z Y, FU B Y, XIE J, et al. Dynamic response of fuselage panel under explosive impact load[J]. Acta Aeronautica et Astronautica Sinica202243(6): 525513 (in Chinese).
2 刘宗兴, 刘军, 李维娜. 爆炸冲击载荷下典型机身结构动响应及破坏[J]. 航空学报202142(2): 224252.
  LIU Z X, LIU J, LI W N. Dynamic response and failure of typical fuselage structure under blast impact load[J]. Acta Aeronautica et Astronautica Sinica202142(2): 224252 (in Chinese).
3 ABDULLAH N A Z, SANI M S M, SALWANI M S, et al. A review on crashworthiness studies of crash box structure[J]. Thin-Walled Structures2020153: 106795.
4 JIA B, RUSINEK A, XIAO X K, et al. Simple shear behavior of 2024-T351 aluminum alloy over a wide range of strain rates and temperatures: Experiments and constitutive modeling[J]. International Journal of Impact Engineering2021156: 103972.
5 JI C, LI Z G, LIU J G. Development of an improved MMC-based fracture criterion characterizing the anisotropic and strain rate-dependent behavior of 6061-T5 aluminum alloy[J]. Mechanics of Materials2020150: 103598.
6 邹学锋, 潘凯, 燕群, 等. 多场耦合环境下高超声速飞行器结构动强度问题综述[J]. 航空科学技术202031(12): 3-15.
  ZOU X F, PAN K, YAN Q, et al. Overview of dynamic strength of hypersonic vehicle structure in multi-field coupling environment[J]. Aeronautical Science & Technology202031(12): 3-15 (in Chinese).
7 ZANCHETTA B D, SILVA V K DA, SORDI V L, et al. Effect of asymmetric rolling under high friction coefficient on recrystallization texture and plastic anisotropy of AA1050 alloy[J]. Transactions of Nonferrous Metals Society of China201929(11): 2262-2272.
8 陈跃良, 张柱柱, 卞贵学, 等. 高应变率条件下38CrMoAl钢的动态力学行为及失效模型[J]. 航空学报202041(10): 423709.
  CHEN Y L, ZHANG Z Z, BIAN G X, et al. Dynamic mechanical behavior and failure model of 38CrMoAl steel under high strain rate[J]. Acta Aeronautica et Astronautica Sinica202041(10): 423709 (in Chinese).
9 BHUJANGRAO T, FROUSTEY C, IRIONDO E, et al. Review of intermediate strain rate testing devices[J]. Metals202010(7): 894.
10 FIELD J E, WALLEY S M, PROUD W G, et al. Review of experimental techniques for high rate deformation and shock studies[J]. International Journal of Impact Engineering200430(7): 725-775.
11 KIMM J S, BERGMANN J A, W?STE F, et al. Deformation behavior of 42CrMo4 over a wide range of temperatures and strain rates in Split-Hopkinson pressure bar tests[J]. Materials Science and Engineering: A2021826: 141953.
12 ZHAO Z Q, LIU P, DANG H Y, et al. Effects of loading rate and loading direction on the compressive failure behavior of a 2D triaxially braided composite[J]. International Journal of Impact Engineering2021156: 103928.
13 NUREL B, NAHMANY M, FRAGE N, et al. Split Hopkinson pressure bar tests for investigating dynamic properties of additively manufactured AlSi10Mg alloy by selective laser melting[J]. Additive Manufacturing201822: 823-833.
14 IRAUSQUíN I, PéREZ-CASTELLANOS J L, MIRA? NDA V, et al. Evaluation of the effect of the strain rate on the compressive response of a closed-cell aluminium foam using the split Hopkinson pressure bar test[J]. Materials & Design201347: 698-705.
15 CHEN W, ZHANG B, FORRESTAL M J. A split Hopkinson bar technique for low-impedance materials[J]. Experimental Mechanics199939(2): 81-85.
16 王维斌, 索涛, 郭亚洲, 等. 电磁霍普金森杆实验技术及研究进展[J]. 力学进展202151(4): 729-754.
  WANG W B, SUO T, GUO Y Z, et al. Experimental technique and research progress of electromagnetic Hopkinson bar[J]. Advances in Mechanics202151(4): 729-754 (in Chinese).
17 邹正平, 张猛, 郎利辉. 基于三维数字图像相关法的管材胀形试验[J]. 航空学报202243(12): 425989.
  ZOU Z P, ZHANG M, LANG L H. Tube bulging test based on 3D digital image correlation method[J]. Acta Aeronautica et Astronautica Sinica202243(12): 425989 (in Chinese).
18 JANELIUKSTIS R, CHEN X. Review of digital image correlation application to large-scale composite structure testing[J]. Composite Structures2021271: 114143.
19 XU Y W, BAO R. Residual stress determination in friction stir butt welded joints using a digital image correlation-aided slitting technique[J]. Chinese Journal of Aeronautics201730(3): 1258-1269.
20 SUR F, BLAYSAT B, GRéDIAC M. Determining displacement and strain maps immune from aliasing effect with the grid method[J]. Optics and Lasers in Engineering201686: 317-328.
21 GRéDIAC M, SUR F, BLAYSAT B. The grid method for In-plane displacement and strain measurement: A review and analysis[J]. Strain201652(3): 205-243.
22 ZHAO G Q, YU X Q, ZENG Q L, et al. Evolution of local deformation field inside adiabatic shear band of 1018 steel studied using digital image correlation with micro-speckles[J]. Extreme Mechanics Letters202254: 101769.
23 PAN B, YU L P, YANG Y Q, et al. Full-field transient 3D deformation measurement of 3D braided composite panels during ballistic impact using single-camera high-speed stereo-digital image correlation[J]. Composite Structures2016157: 25-32.
24 TIWARI V, SUTTON M A, MCNEILL S R, et al. Application of 3D image correlation for full-field transient plate deformation measurements during blast loading[J]. International Journal of Impact Engineering200936(6): 862-874.
25 JUNGSTEDT E, ?STLUND S, BERGLUND L A. Transverse fracture toughness of transparent wood biocomposites by FEM updating with cohesive zone fracture modeling[J]. Composites Science and Technology2022225: 109492
26 JUNGSTEDT E, OLIAEI E, LI L W, et al. Mechanical behavior of all-lignocellulose composites—comparing micro-and nanoscale fibers using strain field data and FEM updating[J]. Composites Part A: Applied Science and Manufacturing2022161: 107095.
27 HAO Z Q, JI X H, DENG L L, et al. Measurement of multiple mechanical properties for polymer composites using digital image correlation at elevated temperatures[J]. Materials & Design2021198: 109349.
28 ZHAO J Y, DONG J, LIU Z W, et al. Characterization method of mechanical properties of rubber materials based on stereo finite-element-model updating[J]. Polymer Testing201979: 106015.
29 GERBIG D, BOWER A, SAVIC V, et al. Coupling digital image correlation and finite element analysis to determine constitutive parameters in necking tensile specimens[J]. International Journal of Solids and Structures201697-98: 496-509.
30 ZALETELJ K, SLAVI? J, BOLTE?AR M. Full-field DIC-based model updating for localized parameter identification[J]. Mechanical Systems and Signal Processing2022164: 108287.
31 WANG W Z, MOTTERSHEAD J E, IHLE A, et al. Finite element model updating from full-field vibration measurement using digital image correlation[J]. Journal of Sound and Vibration2011330(8): 1599-1620.
32 PIERRON F, GRéDIAC M. The linear virtual fields method[M]. New York: Springer, 2012: 57-106.
33 MARTINS J M P, THUILLIER S, ANDRADE-CAMPOS A. Calibration of a modified Johnson-Cook model using the Virtual Fields Method and a heterogeneous thermo-mechanical tensile test[J]. International Journal of Mechanical Sciences2021202-203: 106511.
34 KIM C, KIM J H, LEE M G. A virtual fields method for identifying anisotropic elastic constants of fiber reinforced composites using a single tension test: Theory and validation[J]. Composites Part B: Engineering2020200: 108338.
35 FU J W, BARLAT F, KIM J H, et al. Application of the virtual fields method to the identification of the homogeneous anisotropic hardening parameters for advanced high strength steels[J]. International Journal of Plasticity201793: 229-250.
36 ROSSI M, PIERRON F, ?TAMBORSKá M. Application of the virtual fields method to large strain anisotropic plasticity[J]. International Journal of Solids and Structures201697-98: 322-335.
37 FLETCHER L, DAVIS F, DREUILHE S, et al. High strain rate elasto-plasticity identification using the image-based inertial impact (IBII) test part 1: Error quantification[J]. Strain202157(2): e12375.
38 FU J W, ZHU K Y, NIE X F, et al. Inertia-based identification of elastic anisotropic properties for materials undergoing dynamic loadings using the virtual fields method and heterogeneous impact tests[J]. Materials & Design2021203: 109594.
39 KOOHBOR B, KIDANE A, SUTTON M A, et al. Analysis of dynamic bending test using ultra high speed DIC and the virtual fields method[J]. International Journal of Impact Engineering2017110: 299-310.
40 PIERRON F, ZHU H, SIVIOUR C. Beyond Hopkinson’s bar[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences2014372(2023): 20130195.
41 HILL R, OROWAN E. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences1948193(1033): 281-297.
42 付佳伟, 马臻, 聂祥樊, 等. 基于虚场法的铝合金各向异性屈服及硬化属性参数同步表征[J]. 机械工程学报202157(20): 68-78, 88.
  FU J W, MA Z, NIE X F, et al. Identification of the anisotropic yield and hardening constitutive parameters for aluminum alloys using the virtual fields method[J]. Journal of Mechanical Engineering202157(20): 68-78, 88 (in Chinese).
43 FU J W, XIE W W, ZHOU J M, et al. A method for the simultaneous identification of anisotropic yield and hardening constitutive parameters for sheet metal forming[J]. International Journal of Mechanical Sciences2020181: 105756.
44 SUTTON M A, DENG X, LIU J, et al. Determination of elastic-plastic stresses and strains from measured surface strain data[J]. Experimental Mechanics199636(2): 99-112.
45 FLETCHER L, DAVIS F, DREUILHE S, et al. High strain rate elasto-plasticity identification using the image-based inertial impact (IBII) test part 2: Experimental validation[J]. Strain202157(2): e12374.
46 CHEN G, LU L P, REN C Z, et al. Temperature dependent negative to positive strain rate sensitivity and compression behavior for 2024-T351 aluminum alloy[J]. Journal of Alloys and Compounds2018765: 569-585.
47 BRUSH D O, ALMROTH B O, HUTCHINSON J W. Buckling of bars, plates, and shells[J]. Journal of Applied Mechanics197542(4): 911.
48 LATTANZI A, BARLAT F, PIERRON F, et al. Inverse identification strategies for the characterization of transformation-based anisotropic plasticity models with the non-linear VFM[J]. International Journal of Mechanical Sciences2020173: 105422.
49 VAN BLITTERSWYK J, FLETCHER L, PIERRON F. Image-based inertial impact (IBII) tests for measuring the interlaminar shear moduli of composites[J]. Journal of Dynamic Behavior of Materials20206(3): 373-398.
文章导航

/