基于C-γ-Reθ 模型的多模态高超声速边界层转捩预测
收稿日期: 2023-06-25
修回日期: 2023-07-18
录用日期: 2023-08-07
网络出版日期: 2023-08-18
基金资助
国家重点研发计划(2019YFA0405204);国家自然科学基金(92052301);空气动力学国家重点实验室创新课题(JBKYC190110)
Prediction of multi-mode hypersonic boundary layer transition based on C-γ-Reθ model
Received date: 2023-06-25
Revised date: 2023-07-18
Accepted date: 2023-08-07
Online published: 2023-08-18
Supported by
National Key R & D Program of China(2019YFA0405204);National Natural Science Foundation of China(92052301);Foundation of State Key Laboratory of Aerodynamics(JBKYC190110)
HIFiRE-5、HyTRV均为验证高超声速三维边界层转捩的典型标模。C-γ-Reθ 转捩模型在原始的γ-Reθ 转捩模型基础上进行了高超声速横流转捩修正。运用C-γ-Reθ 转捩模型对飞行、风洞工况下HIFiRE-5、HyTRV进行转捩模拟。对于HIFiRE-5飞行试验,针对其弹道中8个典型高度及存在姿态角的工况进行转捩预测,C-γ-Reθ 转捩模型计算结果与热流测量结果吻合,并对其表面的转捩模态进行了对比分析。对于HIFiRE-5静音/常规风洞试验,C-γ-Reθ 转捩模型能够准确计算变雷诺数工况下转捩阵面形态及转捩起始位置,并与温升测量结果相符。对于HyTRV常规风洞试验,在变马赫数、变雷诺数的工况下,C-γ-Reθ 转捩模型计算结果与模型上、下表面红外热图测量结果基本一致,能够预测横流模态下的边界层转捩,对于转捩起始位置、转捩阵面形态的预测与基于线性稳定性理论的e N 方法具有相当的预测精度。测试表明,对于飞行试验和静音/常规风洞试验,C-γ-Reθ 转捩模型预测结果均保持较高的可靠性,实现了高超声速典型标模的三维边界层转捩预测。
胡震宇 , 肖丰收 , 陈坚强 , 袁先旭 , 张毅锋 , 向星皓 . 基于C-γ-Reθ 模型的多模态高超声速边界层转捩预测[J]. 航空学报, 2024 , 45(12) : 129215 -129215 . DOI: 10.7527/S1000-6893.2023.29215
Standard models such as HIFiRE-5 and HyTRV are used in the validation of hypersonic three-dimensional boundary layer transition. Hypersonic crossflow transition correction is proposed in the C-γ-Reθ transition model based on the original γ-Reθ transition model. In this study, the C-γ-Reθ transition model is applied to transition simulation of HIFiRE-5 and HyTRV under flight test and wind tunnel test conditions. For the flight test of HIFiRE-5, transition prediction is conducted under the conditions including eight typical altitudes and one attitude angle, the results of the C-γ-Reθ transition model are consistent with the heat-flux measurements, and the transition modes on the surface of HIFiRE-5 are compared. For the quiet/noise wind tunnel test of HIFiRE-5, the C-γ-Reθ transition model can accurately calculate the transition front shape and the transition onset location, and the results coincide with the temperature difference measurements. For the noise wind tunnel test of HyTRV, the C-γ-Reθ transition model calculation results of the upper and lower surfaces match with the infrared thermogram measurements under the conditions involving various Reynolds numbers and Mach numbers, and the ability to predict boundary layer transition in the crossflow mode is verified. Its prediction precision of the transition onset location and the transition front shape is on par with the e N method based on LST. As shown in the numerical simulation results, for each of the flight test and the quiet/noise wind tunnel test, the C-γ-Reθ transition model maintains high prediction reliability, and has achieved hypersonic three-dimensional boundary layer transition prediction for typical standard models.
1 | 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. |
CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: What we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337 (in Chinese). | |
2 | ZHOU L, ZHAO R, WU Y, et al. Application of improved k-ω-γ transition model to hypersonic complex configurations[J]. AIAA Journal, 2019, 57(5): 2214-2221. |
3 | 刘清扬, 雷娟棉, 刘周, 等. 适用于可压缩流动的γ-Ret-fRe转捩模型[J]. 航空学报, 2022, 43(8): 327-337. |
LIU Q Y, LEI J M, LIU Z, et al. γ-Ret-fRe transition model for compressible flow[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 327-337 (in Chinese). | |
4 | 李强, 万兵兵, 杨凯, 等. 高超声速尖锥边界层压力脉动和热流脉动特性试验[J]. 航空学报, 2022, 43(2): 124956. |
LI Q, WAN B B, YANG K, et al. Experimental research on characteristics of pressure and heat flux fluctuation in hypersonic cone boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 124956 (in Chinese). | |
5 | HUANG X Y, LI M D, WANG X L, et al. The Tianwen-1 guidance, navigation, and control for Mars entry, descent, and landing[J]. Space: Science & Technology, 2021, 2021: 9846185. |
6 | LI Q, YUAN W, ZHAO R, et al. Study on effect of aerodynamic configuration on aerodynamic performance of Mars ascent vehicles[J]. Space: Science and Technology, 2022, 2022: 9790131. |
7 | 刘坤坤, 阎超, 郝子辉. 后掠机翼的横流不稳定性分析及转捩预测[J]. 气体物理, 2017, 2(5): 18-24. |
LIU K K, YAN C, HAO Z H. Cross-flow instability analysis and transition prediction of swept wing[J]. Physics of Gases, 2017, 2(5): 18-24 (in Chinese). | |
8 | 刘强, 涂国华, 罗振兵, 等. 延迟高超声速边界层转捩技术研究进展[J]. 航空学报, 2022, 43(7): 025357. |
LIU Q, TU G H, LUO Z B, et al. Progress in hypersonic boundary layer transition delay control[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025357 (in Chinese). | |
9 | 周玲, 阎超, 郝子辉, 等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报, 2016, 37(4): 1092-1102. |
ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1092-1102 (in Chinese). | |
10 | 张涵信. 关于CFD高精度保真的数值模拟研究[J]. 空气动力学学报, 2016, 34(1): 1-4. |
ZHANG H X. Investigations on fidelity of high order accurate numerical simulation for computational fluid dynamics[J]. Acta Aerodynamica Sinica, 2016, 34(1): 1-4 (in Chinese). | |
11 | LI Q, ZHAO R, ZHANG S J, et al. Study on dynamic characteristics of Mars entry module in transonic and supersonic speeds[J]. Space: Science and Technology, 2022, 2022: 9753286. |
12 | 袁先旭, 何琨, 陈坚强, 等. MF-1模型飞行试验转捩结果初步分析[J]. 空气动力学学报, 2018, 36(2): 286-293. |
YUAN X X, HE K, CHEN J Q, et al. Preliminary transition research analysis of MF-1[J]. Acta Aerodynamica Sinica, 2018, 36(2): 286-293 (in Chinese). | |
13 | 孔维萱, 张辉, 阎超. 适用于高超声速边界层的转捩准则预测方法[J]. 导弹与航天运载技术, 2013(5): 54-58. |
KONG W X, ZHANG H, YAN C. Transition criterion prediction method for hypersonic boundary layer[J]. Missiles and Space Vehicles, 2013(5): 54-58 (in Chinese). | |
14 | 唐登斌. 边界层转捩[M]. 北京: 科学出版社, 2015: 31-34. |
TANG D B. Boundary layer transition[M]. Beijing: Science Press, 2015: 31-34 (in Chinese). | |
15 | 刘宏康, 陈坚强, 向星皓, 等. 改进k-ω-γ转捩模式对不同雷诺数下HIAD的转捩预测[J]. 航空学报, 2023, 44(6): 126868. |
LIU H K, CHEN J Q, XIANG X H, et al. Transition prediction for HIAD with different Reynolds numbers by improved k-ω-γ transition model[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 126868 (in Chinese). | |
16 | LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906. |
17 | 王亮, 符松. 一种适用于超音速边界层的湍流转捩模式[J]. 力学学报, 2009, 41(2): 162-168. |
WANG L, FU S. A new transition/turbulence model for the flow transition in supersonic boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 162-168 (in Chinese). | |
18 | WARREN E S, HASSAN H A. Transition closure model for predicting transition onset[J]. Journal of Aircraft, 1998, 35(5): 769-775. |
19 | ABDOL-HAMID K S. Assessments of k-kL turbulence model based on menter’s modification to rotta’s two-equation model[J]. International Journal of Aerospace Engineering, 2015, 2015: 987682.1. |
20 | ABDOL-HAMID K. Assessments of a Turbulence Model based on Menter’s Modification to Rotta’s Two-Equation Model[C]∥Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013: AIAA2013-341. |
21 | ZHANG H J, ZOU Z P, LI Y, et al. Conjugate heat transfer investigations of turbine vane based on transition models[J]. Chinese Journal of Aeronautics, 2013, 26(4): 890-897. |
22 | 原泽, 郑群, 岳国强, 等. 低负荷和高负荷压气机叶栅气动性能的实验和数值模拟[J]. 航空动力学报, 2021, 36(4): 724-733. |
YUAN Z, ZHENG Q, YUE G Q, et al. Experiment and numerical simulation on aerodynamic performance of low-loaded and highly-loaded compressor cascades[J]. Journal of Aerospace Power, 2021, 36(4): 724-733 (in Chinese). | |
23 | 李帝辰, 魏闯, 张铁军, 等. 湍流度对低雷诺数翼型气动特性的影响研究[J]. 航空科学技术, 2022, 33(2): 12-21. |
LI D C, WEI C, ZHANG T J, et al. Influence of turbulence intensity on aerodynamic characteristics of low Reynolds number airfoil[J]. Aeronautical Science & Technology, 2022, 33(2): 12-21 (in Chinese). | |
24 | LANGTRY R B, SENGUPTA K, YEH D T, et al. Extending the γ-Reθt local correlation based transition model for crossflow effects[C]∥45th AIAA Fluid Dynamics Conference. Reston: AIAA, 2015: 2474. |
25 | ZHANG Y F, ZHANG Y R, CHEN J Q, et al. Numerical simulations of hypersonic boundary layer transition based on the flow solver chant 2.0[C]∥Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017: AIAA2017-2409. |
26 | 向星皓, 张毅锋, 袁先旭, 等. C-γ-Reθ 高超声速三维边界层转捩预测模型[J]. 航空学报, 2021, 42(9): 625711. |
XIANG X H, ZHANG Y F, YUAN X X, et al. C-γ-Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625711 (in Chinese). | |
27 | XIANG X H, CHEN J Q, YUAN X X, et al. Cross-flow transition model predictions of hypersonic transition research vehicle[J]. Aerospace Science and Technology, 2022, 122: 107327. |
28 | 杨体浩, 王一雯, 王雨桐, 等. 基于离散伴随的层流翼优化设计方法[J]. 航空学报, 2022, 43(12): 126132. |
YANG T H, WANG Y W, WANG Y T, et al. Discrete adjoint-based optimization approach for laminar flow wings[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126132 (in Chinese). | |
29 | RADEZTSKY R H, REIBERT M S, SARIC W S. Effect of isolated micron-sized roughness on transition in swept-wing flows[J]. AIAA Journal, 1999, 37(11): 1370-1377. |
30 | KRIMMELBEIN N, KRUMBEIN A. Automatic transition prediction for three-dimensional configurations with focus on industrial application[C]∥Proceedings of the 40th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2010: AIAA2010-4292. |
31 | JULIANO T J. Instability and transition on the HIFiRE-5 in a Mach-6 Quiet Tunnel[D]. West Lafayette: Purdue University Main Campus, 2010: 1-171. |
32 | JULIANO T J, POGGIE J, PORTER K, et al. HIFiRE-5b heat flux and boundary-layer transition[C]∥Proceedings of the 47th AIAA Fluid Dynamics Conference. Reston: AIAA, 2017: AIAA2017-3134. |
33 | 陈久芬, 徐洋, 蒋万秋 等. 升力体外形高超声速边界层转捩红外测量实验[J]. 实验流体力学, doi: 10.11729/syltlx20220030shu . |
CHEN J F, XU Y, JIANG W Q, et al. Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220030shu (in Chinese). | |
34 | 陈久芬, 凌岗, 张庆虎, 等. 7°尖锥高超声速边界层转捩红外测量实验[J]. 实验流体力学, 2020, 34(1): 60-66. |
CHEN J F, LING G, ZHANG Q H, et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 60-66 (in Chinese). | |
35 | 史亚云, 白俊强, 华俊, 等. 基于当地变量的横流转捩预测模型的研究与改进[J]. 航空学报, 2016, 37(3): 780-789. |
SHI Y Y, BAI J Q, HUA J, et al. Study and modification of cross-flow induced transition model based on local variables[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 780-789 (in Chinese). | |
36 | 张红军, 李海群, 康宏琳, 等. 可压缩修正γ-Reθ 模型在高超声速边界层转捩预测中的应用与验证研究[J]. 空天技术, 2022(4): 40-48. |
ZHANG H J, LI H Q, KANG H L, et al. Research on application and validation of compressibility correction γ-Reθ model for hypersonic boundary transition prediction[J]. Aerospace Technology, 2022(4): 40-48 (in Chinese). | |
37 | HOU Y, WRAY T, AGARWAL R K. Application of SST k-ω transition model to flow past smooth and rough airfoils[C]∥Proceedings of the 47th AIAA Fluid Dynamics Conference. Reston: AIAA, 2017: AIAA2017-3637. |
38 | 陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6): 124317. |
CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124317 (in Chinese). | |
39 | 朱志斌, 冯峰, 沈清. 高超声速椭圆锥边界层横流转捩特性大涡模拟[J]. 气体物理, 2022, 7(3): 60-72. |
ZHU Z B, FENG F, SHEN Q. Large eddy simulation of crossflow transition characteristics in hypersonic elliptic cone boundary layer[J]. Physics of Gases, 2022, 7(3): 60-72 (in Chinese). | |
40 | 张绍龙. 高超声速2: 1椭圆锥边界层的稳定性特征及扰动演化[D]. 天津: 天津大学, 2016. |
ZHANG S L. The instability and wave propagation in the hypersonic 2: 1 elliptic cone boundary layer[D].Tianjin: Tianjin University, 2016 (in Chinese). | |
41 | BORG M, KIMMEL R, STANFIELD S. HIFiRE-5 attachment-line and crossflow instability in a quiet hypersonic wind tunnel[C]∥Proceedings of the 41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011. |
42 | PAREDES P, GOSSE R, THEOFILIS V, et al. Linear modal instabilities of hypersonic flow over an elliptic cone[J]. Journal of Fluid Mechanics, 2016, 804: 442-466. |
43 | 朱志斌, 尚庆, 沈清. 高超声速边界层转捩模型横流效应修正与应用[J]. 航空学报, 2022, 43(7): 125685. |
ZHU Z B, SHANG Q, SHEN Q. Crossflow modification of transition model for hypersonic boundary layer and its application[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125685 (in Chinese). | |
44 | 陈久芬, 徐洋, 许晓斌, 等. 7°尖锥高超声速边界层脉动压力实验研究[J]. 实验流体力学, 2023, 37(6): 51-60. |
CHEN J F, XU Y, XU X B, et al. Experimental study on fluctuating pressure in hypersonic boundary layer with 7 sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 51-60 (in Chinese). | |
45 | QI H, LI X L, YU C P, et al. Direct numerical simulation of hypersonic boundary layer transition over a lifting-body model HyTRV[J]. Advances in Aerodynamics, 2021, 3(1): 31. |
/
〈 |
|
〉 |