传统弹箭类飞行器由于机动能力限制,难以实现快速、小半径、大角度的敏捷转弯。本文通过导弹上加装可控翼伞作为控制面,提出一种翼伞-导弹系统,实现导弹敏捷转弯。首先针对由导弹、翼伞、伞绳、连接点组成的伞弹系统进行动力学建模,给出9自由度伞弹系统动力学模型。通过纵向平面内的弹道仿真,对比分析了在翼伞襟翼偏转角0°、25°和50°情况下伞弹系统的运动情况,结果表明翼伞-导弹系统可以实现敏捷转弯。通过对伞弹系统动力学模型进行分岔分析,研究了不同襟翼偏转角情况下,以翼伞安装角为连续变化参数时系统的分岔曲线,得到导弹实现敏捷转弯的最小转弯半径及最大转弯末速所对应的目标平衡点,分析了目标平衡点附近的吸引域变化情况。弹道仿真结果表明通过合理选取翼伞襟翼偏转角及安装角,可以使质量为73 kg的导弹实现最小转弯半径14.50 m,最小速度损失20.4 m/s。伞弹系统对于提高传统战术导弹的敏捷转弯性能具有重要参考意义。
Traditional projectiles is difficult to realize the quick, small radius and large angle agile turn due to the limitation of maneu-verability. In this paper, a parafoil-missile system, missile with a suspending parafoil as the control surface, is proposed. Firstly, the dynamic model of the parafoil-missile system composed of missile, parafoil, ropes and connection point is proposed, and the dynamic model of the 9-DOF parafoil-missile system is presented. The motion of the parafoil-missile system is compared and analyzed when the flaps deflection is 0°, 25° and 50° through trajectory simulation in the longitu-dinal plane. The analysis results show that the parafoil-missile system can realize agile turn. By means of bifurcation analysis of the dynamic model of the parafoil-missile system, the bifurcation diagram of the system is studied under dif-ferent flap deflections and the rigging angle is taken as the continuous variable parameter. The target stable equilibrium corresponding to the minimum turn radius and the maximum turn final speed of the missile to realize agile turn is obtained. The variation of the attractive region near the target stable equilibrium is analyzed. The trajectory simulation shows that the missile with a mass of 73 kg can achieve the minimum turn radius of 14.50 m and the minimum velocity loss of 20.4 m/s, by selecting the flap deflection and rigging angle reasonably. The parafoil-missile system has important reference significance for improving the performance of agile turn of traditional tactical missiles.
[1] THUKRAL A,INNOCENTI M. A sliding mode mis-sile pitch autopilot synthesis for high angle of attack maneuvering[J]. IEEE Transactions on Control Sys-tems Technology, 1998, 6(3): 359-371.
[2] 赵新运, 于剑桥. 导弹敏捷转弯段的新型非奇异终端滑模控制[J]. 宇航学报, 2022, 43(04): 454-464.
ZHAO X Y, YU J Q. Novel non-singular terminal slid-ing mode control for missile’s agile turn[J]. Journal of Astronautics, 2022, 43(04): 454-464. (in Chinese).
[3] 李政, 于剑桥, 赵新运. 空空导弹敏捷转弯固定时间收敛滑模控制[J/OL]. 航空学报,1-14[2023-05-15].http://kns.cnki.net/kcms/detail/11.1929.V.20220608.1326.026.html.
LI Z, YU J Q, ZHAO X Y. Fixed-time convergent slid-ing mode control for agile turn of air-to-air mis-siles[J/OL]. Acta Aeronautica et Astronautica Sinica, 1-14[2023-05-15].http://kns.cnki.net/kcms/detail/11.1929.V.20220608.1326.026.html.
[4] 郭锐, 刘荣忠. 末敏弹刚柔耦合系统动力学模型及仿真[J]. 兵工学报, 2007(01): 10-14.
GUO R, LIU R Z. Dynamics model and simulation of rigid and flexible coupling system for terminal-sensitive submunition[J]. Acta Armamentarii, 2007(01): 10-14. (in Chinese).
[5] 唐乾刚, 王昱, 张青斌, 等. 伞-弹动力学及运动学在末敏弹目标识别中的应用[J]. 兵工学报, 2007(07): 796-799.
[6] TANG Q G, W Y, ZHANG Q B, et al. Application of dynamics and kinematics pf parachute-bomb system in target identification for a target sensitive projec-tile[J]. Acta Armamentarii, 2007(07): 796-799. (in Chinese).
[7] 马晓冬, 郭锐, 刘荣忠, 等. 旋转伞-子弹系统动力学建模与仿真[J]. 弹道学报, 2015, 27(03): 12-17.
MA X D, GUO R, LIU R Z, et al. Dynamics modeling and simulation for rotating parachute-submunition system[J]. Journal of Ballistics, 2015, 27(03): 12-17. (in Chinese).
[8] BROWN G, HAGGARD R, FOGLEMAN J. Parafoils for shipboard recovery of UAVs[C]//11th Aerodynam-ic Decelerator Systems Technology Conference. 1991: 835.
[9] WYLLIE T, DOWNS P, WYLLIE T, et al. Precision parafoil recovery-Providing flexibility for battlefield UAV systems?[C]//14th Aerodynamic Decelerator Systems Technology Conference. 1997: 1497.
[10] PATEL S, HACKETT N, JORGENSEN D, et al. Quali-fication of the guided parafoil air delivery system-light (GPADS-Light)[C]//14th Aerodynamic Decelera-tor Systems Technology Conference. 1997: 1493.
[11] MORTALONI P, YAKIMENKO O, DOBROKHODOV V, et al. On the development of a six-degree-of-freedom model of a low-aspect-ratio parafoil delivery system[C]//17th AIAA Aerodynam-ic Decelerator Systems Technology Conference and Seminar. 2003: 2105.
[12] SLEGERS N, BEYER E, COSTELLO M. Use of vari-able incidence angle for glide slope control of auton-omous parafoils[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3): 585-596.
[13] 陈奇, 赵敏, 赵志豪, 等. 多自主翼伞系统建模及其集结控制[J]. 航空学报, 2016, 37(10): 3121-3130.
CHEN Q, ZHAO M, ZHAO Z H, et al. Multiple au-tonomous parafoils system modeling and rendezvous control[J]. Acta Aeronautica et Astronautica Sinica, 2016,37(10):3121-3130. (in Chinese).
[14] WISE K. Dynamics of a UAV with parafoil under powered flight[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. 2006: 6795.
[15] REDELINGHUYS C. A flight simulation algorithm for a parafoil suspending an air vehicle[J]. Journal of guidance, control, and dynamics, 2007, 30(3): 791-803.
[16] PRAKASH O, ANANTHKRISHNAN N. Modeling and simulation of 9-DOF parafoil-payload system flight dynamics[C]//AIAA Atmospheric Flight Me-chanics Conference and Exhibit. 2006: 6130.
[17] PRAKASH O, DAFTARY A, ANANTHKRISHNAN N. Trim and stability analysis of parafoil/payload sys-tem using bifurcation methods[C]//18th AIAA Aero-dynamic Decelerator Systems Technology Conference and Seminar. 2005: 1666.
[18] YANG H, SONG L, CHEN W. Research on parafoil stability using a rapid estimate model[J]. Chinese Journal of Aeronautics, 2017, 30(05): 1670-1680.
[19] NICOLAIDES J D. Parafoil wind tunnel tests[R]. In-diana: University of Notre Dame, 1971.
[20] 孙青林, 梁炜, 陈增强, 等. 襟翼偏转翼伞气动性能数值模拟分析[J].哈尔滨工业大学学报, 2017, 49(04): 48-54.
SUN Q L, LIANG W, CEHN Z Q, et al. Numerical simulation analysis for aerodynamic performance of parafoil with flap deflection[J]. Journal of Harbin In-stitute of Technology, 2017, 49(04): 48-54. (in Chi-nese).
[21] 朱虹, 孙青林, 邬婉楠, 等. 伞翼无人机精确建模与控制[J]. 航空学报, 2019, 40(06): 79-91.
ZHU H, SUN Q L, WU W N, et al. Accurate modeling and control for parawing unmanned aerial vehicle. [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(06): 79-91. (in Chinese).
[22] LISSAMAN P, BROWN G. Apparent mass effects on parafoil dynamics[C]// Aerospace Design Conference. 1993.
[23] BARROWS T M. Apparent Mass of Parafoils with Spanwise Camber[J]. Journal of Aircraft, 2002, 39(3): 445-451.
[24] 王福军. 计算流体动力学分析:CFD软件原理与应用[M] . 北京:清华大学出版社,2004:115-116.
WANG Fujun. Computational fluid dynamics analysis: principles and applications of CFD software [M]. Bei-jing: Tsinghua University Press, 2004:115-116. (in Chinese).
[25] MANSOUR N, KIM J, MOIN P. Near wall k-epsilon turbulence modeling[J]. AIAA Journal, 1989, 27(8): 1068-1073.
[26] EUGENE L F. Missile Design Guide[M]. Virginia: American Institute of Aeronautics and Astronautics. 2022: 145-147.
[27] DHOOGE A, GOVAERTS W, KUZNETSOV Y A. MATCONT: A MATLAB package for numerical bifur-cation analysis of ODEs[J]. Acm Transactions on Mathematical Software, 2003, 29(1):141-164.