电子电气工程与控制

无线航空电子机内通信MIMO信道仿真

  • 卓越东 ,
  • 李峭 ,
  • 卢广山 ,
  • 武俊杰
展开
  • 北京航空航天大学 电子信息工程学院,北京 100191
.E-mail: avionics@buaa.edu.cn

收稿日期: 2023-05-06

  修回日期: 2023-06-06

  录用日期: 2023-08-11

  网络出版日期: 2023-08-18

基金资助

国家自然科学基金(62071023)

Simulation of MIMO channel for wireless avionics intra-communications

  • Yuedong ZHUO ,
  • Qiao LI ,
  • Guangshan LU ,
  • Junjie WU
Expand
  • School of Electronics and Information Engineering,Beihang University,Beijing 100191,China

Received date: 2023-05-06

  Revised date: 2023-06-06

  Accepted date: 2023-08-11

  Online published: 2023-08-18

Supported by

National Natural Science Foundation of China(62071023)

摘要

无线航空电子机内通信(WAIC)宽带互连可选用多天线无线局域网(WLAN)。在航空电子设备舱,无线电信号在机舱结构和航电设备架之间的反射是造成多径衰落的主要因素,而且在进行多入多出(MIMO)传输时,不同天线接收信号间的相关性一般不可忽略。根据航电设备架和设备布置的几何位置关系及其材质,建立了三维模型,采用接收球反射角误差法模拟信号在航电舱内的传播路径。针对不同航电设备安装密度条件,分别考虑均匀线性和圆形天线的信号接收情况进行仿真,使用聚类对数据预处理,得到多簇多径信道模型,并使用多径衰落和时延分布描述的航电舱WAIC信道特性,统计分析得到MIMO信道传输矩阵,以及接收机天线间相关性对信道性能的影响。仿真分析表明,当航电设备安装密度大于60%时,信道条件可近似采用完全满载时的信道参数。文中的仿真分析方法为航电设备架附近的MIMO无线传输特性分析和设计提供了参考。

本文引用格式

卓越东 , 李峭 , 卢广山 , 武俊杰 . 无线航空电子机内通信MIMO信道仿真[J]. 航空学报, 2024 , 45(8) : 328969 -328969 . DOI: 10.7527/S1000-6893.2023.28969

Abstract

Wideband intra-connection for Wireless Avionics Intra-Communications (WAIC) can be achieved by using multi-antenna Wireless Local Area Networks (WLAN). In the avionics cabin, the reflection of signals between the cabin structure and avionics equipment racks is the main factor causing multipath fading. Moreover, the correlation between received signals from different antennas generally cannot be disregarded when Multiple-Input Multiple-Output (MIMO) transmission is performed. In this paper, a three-dimensional model is established according to the arrangement geometric relationship and material properties of the avionics equipment racks and equipment. The signal propagation path in the avionics cabin is simulated using the reflection angle error method of the receiving sphere. For different avionics equipment installation density, simulations are performed considering the reception scenarios of uniform linear and circular antenna signals separately. Cluster-based data preprocessing is used to derive the multi-cluster multipath channel model, as well as the WAIC channel characteristics of the avionics cabin described by multipath fading and time delay distribution. The MIMO channel transmission matrix and the impact of inter-receiver antenna correlation on channel performance are obtained through statistical analysis. The simulation analysis shows that the channel conditions can be approximated using fully loaded channel parameters when the installation density of avionics equipment is greater than 60%. The simulation analysis method proposedcan provide a reference for the analysis and design of MIMO wireless transmission characteristics near avionics equipment racks.

参考文献

1 王昊天, 李峭, 熊华钢. 性能保证条件下航空电子高速交换机的加速方法[J]. 航空学报201031(8): 1653-1659.
  WANG H T, LI Q, XIONG H G. Speedup scheme for avionic high-speed switch under performance guaranteed constraints[J]. Acta Aeronautica et Astronautica Sinica201031(8): 1653-1659 (in Chinese).
2 赵长啸, 何锋, 阎芳, 等. 面向风险均衡的AFDX虚拟链路路径寻优算法[J]. 航空学报201839(1): 321435.
  ZHAO C X, HE F, YAN F, et al. Path optimization algorithm for AFDX virtual link to balance the network risk[J]. Acta Aeronautica et Astronautica Sinica201839(1): 321435 (in Chinese).
3 赵露茜, 李峭, 林晚晴, 等. 基于随机网络演算的TTE网络时延分析[J]. 航空学报201637(6): 1953-1962.
  ZHAO L X, LI Q, LIN W Q, et al. Stochastic network calculus for analysis of latency on TTEthernet network[J]. Acta Aeronautica et Astronautica Sinica201637(6): 1953-1962 (in Chinese).
4 FURSE C, HAUPT R. Down to the wire aircraft wiring[J]. IEEE Spectrum200138(2): 34-39.
5 YEH Y C. Safety critical avionics for the 777 primary flight controls system[C]∥20th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2002: 1C2/1-1C2/11.
6 CINIBULK W. Aircraft electrical wire: Wire manufacturers perspective[EB/OL]. (2014-09-08) [2023-05-01]. .
7 ITU. Technical characteristics and spectrum requirements of wireless avionics intra-communications systems to support their safe operation: Report M 2283-0[S].Geneva: International Telecommunications Union, 2013.
8 BALTACI A, ZOPPI S, KELLERER W, et al. Evaluation of cellular technologies for high data rate WAIC applications[C]∥2019 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2019: 1-6.
9 GASKA T, WATKIN C, CHEN Y. Integrated modular avionics - past, present, and future[J]. IEEE Aerospace and Electronic Systems Magazine201530(9): 12-23.
10 ZHANG C, XIAO J L, ZHAO L. Wireless asynchronous transfer mode based fly-by-wireless avionics network[C]∥2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2013: 1-16.
11 COLLINS J. The challenges facing US navy aircraft electrical wiring systems[C]∥Proceedings of the 9th Annual Aging Aircraft Conference, 2006.
12 ELGEZABAL GóMEZ O. Fly-by-wireless: Benefits, risks and technical challenges[C]∥CANEUS Fly by Wireless Workshop. Piscataway: IEEE Press, 2010: 14-15.
13 SáMANO-ROBLES R, TOVAR E, CINTRA J, et al. Wireless avionics intra-communications: Current trends and design issues[C]∥2016 Eleventh International Conference on Digital Information Management (ICDIM). Piscataway: IEEE Press, 2016: 266-273.
14 SURYANEGARA M, NASHIRUDIN A, RAHARYA N, et al. The compatibility model between the wireless avionics intra-communications (WAIC) and fixed services at 22-23 GHz[C]∥2015 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES). Piscataway: IEEE Press, 2015: 1-5.
15 ITU-R. Final acts WRC-15[C]∥World Radiocommunication Conference. Geneva: International Telecommunications Union, 2015.
16 段英, 余斌, 宁春海, 等. 基于无线传感器网络的紧急保护通道重构方案研究[J]. 湖南电力202040(4): 81-86.
  DUAN Y, YU B, NING C H, et al. Study on emergency communication channel scheme based on wireless sensor network[J]. Hunan Electric Power202040(4): 81-86 (in Chinese).
17 WATTEYNE T, HANDZISKI V, VILAJOSANA X, et al. Industrial wireless IP-based cyber–physical systems[J]. Proceedings of the IEEE2016104(5): 1025-1038.
18 KUSHALNAGAR N, MONTENEGRO G, SCHUMA? CHER C. IPv6 over low-power wireless personal area networks (6LoWPANs): Overview, assumptions, problem statement, and goals[EB/OL]. (2007-08-01) [2023-05-01]. .
19 NIEMINEN J, SAVOLAINEN T, ISOMAKI M, et al. IPv6 over BLUETOOTH (R) low energy[EB/OL]. (2015-10-01) [2023-05-01]. .
20 IEEE Working Group. IEEE Std: Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, amendment 5: Enhancements for higher throughput: IEEE 802.11n-2009 [S]. Piscataway: IEEE Press, 2009.
21 CHAMPAIGNE K. Techniques for improving reliablility of wireless sensor networks in flight applications[C]∥Proceedings of the Caneus/NASA Fly-by-wireless Conference, 2007: 1-25.
22 GE Intelligent Platforms. AFDX/ARINC 664 protocol tutorial [S].Chantilly: GE Fanuc, 2007.
23 International SAE. Time-triggered Ethernet: AS6802 [S]. Warrendale: SAE International, 2016.
24 LIANG Z. Research on airborne wireless sensor network based on Wi-Fi technology[C]∥GAO H, WUN J, YIN J, et al. International Conference on Communications and Networking in China. Cham: Springer, 2022: 3-12.
25 FAN X H, LI S N, MA X Y, et al. Conformal multiple input multiple output antenna array for wireless avionics intra-communications system in aircraft cabin[J]. International Journal of RF and Microwave Computer-Aided Engineering202232(10): 32.
26 ITU. Technical characteristics and operational objectives for wireless avionics intra-communications (WAIC): Report M2197[S]. Geneva: International Telecommunications Union, 2010.
27 DANG D K, MIFDAOUI A, GAYRAUD T. Fly-By-Wireless for next generation aircraft: Challenges and potential solutions[C]∥2012 IFIP Wireless Days. Piscataway: IEEE Press, 2012: 1-8.
28 ITU. Compatibility analysis between wireless avionic intra-communication systems and systems in the existing services in the frequency band 4200-4400 MHz: Report M2319-0[S]. Geneva: International Telecommunications Union, 2014.
29 SAGHIR H, NERGUIZIAN C, LAURIN J J, et al. In-cabin wideband channel characterization for WAIC systems[J]. IEEE Transactions on Aerospace and Electronic Systems201450(1): 516-529.
30 DWIVEDI A, ZOPPI S, KELLERER W, et al. Wireless avionics intra-communication (WAIC) QoS measurements of an ultra wideband (UWB) device for low-data rate transmissions[C]∥2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2020: 1-10.
31 SCHMIDT J F, NEUHOLD D, BETTSTETTER C, et al. Wireless connectivity in airplanes: Challenges and the case for UWB[J]. IEEE Access20219: 52913-52925.
32 FUTATSUMORI S, MIYAZAKI N, HIKAGE T, et al. Interference path loss measurements of beechcraft B300 aircraft at 4 GHz wireless avionics intra-communication band[C]∥2020 International Symposium on Electromagnetic Compatibility-EMC EUROPE. Piscataway: IEEE Press, 2020: 1-4.
33 FUTATSUMORI S, MIYAZAKI N, HIRAGA N, et al. Helicopter radio altimeter interference path loss measurement including adjacent 5G mobile telecommunications band[C]∥2021 IEEE Asia-Pacific Microwave Conference (APMC). Piscataway: IEEE Press, 2021: 476-478.
34 左沅君, 李峭, 熊华钢, 等. 航空电子MB-OFDM-UWB无线互连信道分析与仿真[J]. 航空学报201940(7): 322739.
  ZUO Y J, LI Q, XIONG H G, et al. Analysis and simulation of avionics MB-OFDM-UWB wireless interconnection channel[J]. Acta Aeronautica et Astronautica Sinica201940(7): 322739 (in Chinese).
35 WU J J, LI Q, ZHUO Y D. Analysis of WAIC QoS guarantees using wireless LAN technology[C]∥2022 21st International Symposium on Communications and Information Technologies (ISCIT). Piscataway: IEEE Press, 2022: 76-81.
36 ZHANG C, YU J Z, PANG K K. Multiple access points deployment optimization in cabin wireless communications[J]. IEEE Antennas and Wireless Propagation Letters201312: 1220-1223.
37 LIU H N, ZHANG B W, LU Y. Wireless avionics intra-communication for military use based on 5G millimeter wave technology[C]∥WU M, NIU Y, GU M, et al. International Conference on Autonomous Unmanned Systems. Singapore: Springer, 2022: 1526-1536.
38 LIN H C, YU Q Y. Mathematical modeling and design of RIS deployment in a RIS-assisted metal cuboid for WAIC systems[J]. China Communications202320(4): 86-101.
39 IEEE Working Group. TGn channel models: IEEE 80211-03/940r2 [S]. Piscataway: IEEE Press, 2004.
40 SALEH A A M, VALENZUELA R. A statistical model for indoor multipath propagation[J]. IEEE Journal on Selected Areas in Communications19875(2): 128-137.
41 CRAMER R J M, SCHOLTZ R A, WIN M Z. Evaluation of an ultra-wide-band propagation channel[J]. IEEE Transactions on Antennas and Propagation200250(5): 561-570.
42 POON A S Y, HO M. Indoor multiple-antenna channel characterization from 2 to 8 GHz[C]∥IEEE International Conference on Communications. Piscataway: IEEE Press, 2003: 3519-3523.
43 GERMAN G, SPENCER Q, SWINDLEHURST L, et al. Wireless indoor channel modeling: Statistical agreement of ray tracing simulations and channel sounding measurements[C]∥2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE Press, 2002: 2501-2504.
44 WANG J G, MOHAN A S, AUBREY T A. Angles-of-arrival of multipath signals in indoor environments[C]∥Proceedings of Vehicular Technology Conference. Piscataway: IEEE Press, 2002: 155-159.
45 CHONG C C, LAURENSON D I, MCLAUGHLIN S. Statistical characterization of the 5.2 GHz wideband directional indoor propagation channels with clustering and correlation properties[C]∥IEEE 56th Vehicular Technology Conference. Piscataway: IEEE Press, 2002: 629-633.
46 KERMOAL J P, SCHUMACHER L, MOGENSEN P E, et al. Experimental investigation of correlation properties of MIMO radio channels for indoor picocell scenarios[C]∥IEEE 52nd Vehicular Technology Conference. Piscataway: IEEE Press, 2002: 14-21.
47 SCHUMACHER L, PEDERSEN K I, MOGENSEN P E. From antenna spacings to theoretical capacities - guidelines for simulating MIMO systems[C]∥The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Piscataway: IEEE Press, 2002: 587-592.
48 SOMA P, BAUM D S, ERCEG V, et al. Analysis and modeling of multiple-input multiple-output (MIMO) radio channel based on outdoor measurements conducted at 2.5 GHz for fixed BWA applications[C]∥2002 IEEE International Conference on Communications. Piscataway: IEEE Press, 2002: 272-276.
49 CHEN Y F, BEAULIEU N C. Maximum likelihood estimation of the K factor in Ricean fading channels[J]. IEEE Communications Letters20059(12): 1040-1042.
50 TSAI J A, BUEHRER R M, WOERNER B D. BER performance of a uniform circular array versus a uniform linear array in a mobile radio environment[J]. IEEE Transactions on Wireless Communications20043(3): 695-700.
51 吴庆, 王彤, 屠晓杰, 等. 机舱内部超宽带无线信道参数仿真[J]. 计算机仿真201431(12): 49-53, 58.
  WU Q, WANG T, TU X J, et al. Calculation of ultra wideband channel parameters in aircraft cabin[J]. Computer Simulation201431(12): 49-53, 58 (in Chinese).
52 KONG J A. Theory of electromagnetic waves[M]. New York: John Wiley & Sons,1975: 120-132.
53 CHIU S, CHUANG J, MICHELSON D G. Characterization of UWB channel impulse responses within the passenger cabin of a boeing 737-200 aircraft[J]. IEEE Transactions on Antennas and Propagation201058(3): 935-945.
54 BACHHUBER M. Analyse und modellierung der funkausbreitung in passagierkabinen von gro?raumflugzeugen[J].Asia-Pacific Journal of Chemical Engineering20112(4):278-281.
  BACHHUBER M. Analysis and modelling of radio propagation in passenger cabins of wide-body aircraft[J]. Asia-Pacific Journal of Chemical Engineering20112(4): 278-281 (in Deutsch).
55 KYRITSI P, COX D C. Propagation characteristics of horizontally and vertically polarized electric fields in an indoor environment: Simple model and results[C]∥IEEE 54th Vehicular Technology Conference. Piscataway: IEEE Press, 2002: 1422-1426.
56 NATO. Modular and open avionics architectures, Part IV: Packaging military agency for standardization: STANAG4626(draft1) [S]. Brussels: The North Atlantic Treaty Organization, 2005.
57 BOEING. Aircraft illustrated parts catalog 777-200/300 section 25-17, flight compartment E/E equipment centers[EB/OL]. (2022-04-28)[2023-03-01]. .
58 BAILY S, JACKSON A, RUSSELL J, et al. standard avionics packaging, mounting, and cooling baseline study[R]. Annapolis: ARINC Research Croporation, 1980.
59 朱正吼. 碳纤维复合材料电磁特性研究[J]. 机械工程材料200125(11): 14-16.
  ZHU Z H. Electromagnetic properties of carbon fiber composite[J]. Materials for Mechanical Engineering200125(11): 14-16 (in Chinese).
60 LOREDO S, MANTECA B, TORRES R P. Polarization diversity in indoor scenarios: An experimental study at 1.8 and 2.5 GHz[C]∥The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Piscataway: IEEE Press, 2002: 896-900.
61 KERMOAL J P, SCHUMACHER L, FREDERIKSEN F, et al. Polarization diversity in MIMO radio channels: Experimental validation of a stochastic model and performance assessment[C]∥IEEE 54th Vehicular Technology Conference. Piscataway: IEEE Press, 2001: 22-26.
62 DAVIES D L, BOULDIN D W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence1979(2): 224-227.
文章导航

/