结冰与防除冰

直升机多管式分离器结冰及压降损失

  • 张丽芬 ,
  • 余邦拓 ,
  • 徐弘历 ,
  • 赵建辉 ,
  • 徐致远 ,
  • 刘振侠
展开
  • 1.西北工业大学 动力与能源学院,西安 710072
    2.中国航发湖南动力机械研究所,株洲 412002
.E-mail: zhanglifen@nwpu.edu.cn

收稿日期: 2023-07-10

  修回日期: 2023-07-16

  录用日期: 2023-07-25

  网络出版日期: 2023-08-11

Icing and pressure drop loss on helicopter multi-tube separator

  • Lifen ZHANG ,
  • Bangtuo YU ,
  • Hongli XU ,
  • Jianhui ZHAO ,
  • Zhiyuan XU ,
  • Zhenxia LIU
Expand
  • 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China
    2.AECC Hunan Aviation Powerplant Research Institute,Zhuzhou 412002,China

Received date: 2023-07-10

  Revised date: 2023-07-16

  Accepted date: 2023-07-25

  Online published: 2023-08-11

摘要

针对直升机多管式分离器结冰导致的进气压力损失问题,研究了环境温度、水滴平均容积直径、来流速度、液态水含量对涡旋管结冰的影响以及涡旋管结冰引起的压力损失。计算结果表明,液态水含量对直升机涡旋管唇口结冰的影响最大,然后依次是环境温度、来流速度、水滴平均容积直径。涡旋管压力损失随结冰厚度的增大而增大,不能忽视涡旋管唇口结冰带来的压力损失。环境温度越低,涡旋管唇口结冰越严重;水滴平均容积直径增大,涡旋管唇口外表面结冰范围增大,涡旋管内部结冰区域反而减小;来流速度越小,涡旋管唇口内部结冰越严重,来流速度越大,涡旋管唇口表面结冰量越大;液态水含量增大,不论是涡旋管唇口表面还是涡旋管唇口内部,结冰量都有显著增大的趋势,结冰厚度和结冰范围均增大。

本文引用格式

张丽芬 , 余邦拓 , 徐弘历 , 赵建辉 , 徐致远 , 刘振侠 . 直升机多管式分离器结冰及压降损失[J]. 航空学报, 2023 , 44(S2) : 729303 -729303 . DOI: 10.7527/S1000-6893.2023.29303

Abstract

The effects of ambient temperature, average volume diameter of water droplets, incoming flow velocity, liquid water content on vortex tube icing and the resulting pressure loss were studied for the problem of inlet pressure loss caused by icing in helicopter multi-tube separators. The calculation results show that the liquid water content exerts the greatest effect on the lip icing of the helicopter vortex tube, followed by ambient temperature, incoming flow velocity, and the average volume diameter of water droplets. The vortex tube pressure loss increases with the increase of icing thickness, and the importance of addressing pressure losses induced by lip icing is emphasized. Lower ambient temperature results in more serious lip icing of the vortex tube. The larger average volume diameter of water droplets leads to increased icing area on the outer surface of the vortex tube lip, with a reduction in the icing area inside the vortex tube. Decreased incoming flow velocity results in more serious icing inside the lip of the vortex tube, while increased incoming flow velocity leads to larger icing area on the surface of the vortex tube lip. Increased liquid water content leads to a significant increase in ice formation, both on the surface of the vortex tube lip and inside the lip, with an increase in icing thickness and coverage.

参考文献

1 栾一刚. 轴流旋风分离器数值模拟与实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2011: 3-4.
  LUAN Y G. Numerical simulation and experimental study of axial flow cyclone separator[D]. Harbin: Harbin Engineering University, 2011: 3-4 (in Chinese).
2 尉建刚. 飞机翼面结冰过程及气动特性影响数值研究[D]. 西安: 西北工业大学, 2011: 1-3.
  WEI J G. Numerical study on aircraft wing surface icing process and its aerodynamic effects[D]. Xi’an: Northwestern Polytechnical University, 2011: 1-3 (in Chinese).
3 刘文峰. 涡旋管分离器性能的数值研究[D]. 大连: 大连海事大学, 2017: 1-3.
  LIU W F. Numerical investigation on performance of vortex tube separator[D]. Dalian: Dalian Maritime University, 2017: 1-3 (in Chinese).
4 范文正, 于海滨. 直升机进气防护装置的现状和发展趋势[J]. 航空科学技术200011(1): 31-32.
  FAN W Z, YU H B. Status and trends of the inlet preventer of helicopter[J]. Acronantical Science and Techology200011(1): 31-32 (in Chinese).
5 胡娅萍. 航空发动机进口部件积冰的数值模拟研究[D]. 南京: 南京航空航天大学, 2009: 2-4.
  HU Y P. Numerical simulation of ice accretion on aero-engine entry components[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009: 2-4 (in Chinese).
6 朱春玲, 朱程香. 飞机结冰及其防护[M]. 北京: 科学出版社, 2016: 144-146.
  ZHU C L, ZHU C X. Aircraft icing and its protection[M]. Beijing: Science Press, 2016: 144-146 (in Chinese).
7 BIANCHINI, GEORGE V. Field evaluation of an air cleaner for the T63 engine-powered OH-6A aircraft[C]∥Proceeding of the Seventh Annual National Conference on Environmental Effects on Aircraft and Propulsion Systems. 1967.
8 李立国, 王锁芳. 直升机发动机的进气防护[M]. 北京: 国防工业出版社, 2009.
  LI L G, WANG S F. Inlet protection of engine for helicopter[M]. Beijing: National Defense Industry Press, 2009 (in Chinese).
9 韩佳. 燃气轮机涡旋管式进气滤清器性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2012: 1-8.
  HAN J. Research on characteristics of vortex tube air intake filter in gas turbine[D]. Harbin: Harbin Engineering University, 2012: 1-8 (in Chinese).
10 KIM W S, LEE J W. Collection efficiency model based on boundary-layer characteristics for cyclones[J]. AIChE Journal199743(10): 2446-2455.
11 GHENAIET A, TAN S C. Numerical study of an inlet particle separator[C]∥Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air, 2004: 269-281.
12 FILIPPONE A, BOJDO N. Turboshaft engine air particle separation[J]. Progress in Aerospace Sciences201046(5-6): 224-245.
13 SHARMA T K, RAO G P, MURTHY K M. Numerical analysis of a vortex tube: a review[J]. Archives of Computational Methods in Engineering201724(2): 251-280.
14 VERCILLO V, KARPEN N, LAROCHE A, et al. Analysis and modelling of icing of air intake protection grids of aircraft engines[J]. Cold Regions Science and Technology2019160: 265-272.
15 DZIUBAK T, B?KA?A L, KARCZEWSKI M, et al. Numerical research on vortex tube separator for special vehicle engine inlet air filter[J]. Separation and Purification Technology2020237: 116463.
16 ACHARYA A, LOWE T, NG W. Experimental measurements on a vortex tube separator array[C]∥Proceedings of the AIAA AVIATION 2022 Forum. 2022.
17 林国华, 袁修干, 杨燕生. 粒子分离器气动特性数值研究[J]. 航空动力学报199813(2): 199-202.
  LIN G H, YUAN X G, YANG Y S. Numerical simulation of flow field in an air particle separator[J]. Journal of Aerospace Power199813(2): 199-202 (in Chinese) .
18 王先炜, 孙中海. 涡旋管砂尘分离效率计算方法[J]. 直升机技术2008(1): 20-23.
  WANG X W, SUN Z H. A method of computing vortex tube’s dust separation efficiency[J]. Helicopter Technique2008(1): 20-23 (in Chinese).
19 何杰, 黄文捷. 某型直升机发动机进气道热气防冰性能研究[J]. 直升机技术2017(4): 34-39, 45.
  HE J, HUANG W J. Study on performance of a helicopter engine inlet hot-air anti-icing system[J]. Helicopter Technique2017(4): 34-39, 45 (in Chinese).
20 韩戈, 阳诚武, 李紫良, 等. 离心压气机管式扩压器研究进展及评述[J]. 航空学报201738(9): 520949.
  HAN G, YANG C W, LI Z L, et al. A review of studies on pipe diffuser of centrifugal compressor[J]. Acta Aeronautica et Astronautica Sinica201738(9): 520949 (in Chinese).
21 刘冬冬, 李星萍, 胡路平, 等. 防砂装置结冰特性的实验研究[J]. 中国设备工程2021(23): 176-178.
  LIU D D, LI X P, HU L P, et al. Experimental study on icing characteristics of sand control device[J]. China Plant Engineering2021(23): 176-178 (in Chinese).
22 马乙楗, 柴得林, 王强, 等. 翼面结冰过程中的冰晶运动相变与黏附特性[J]. 航空学报202344(1): 41-52.
  MA Y J, CHAI D L, WANG Q, et al. Phase change and adhesion characteristics of ice crystal movements in wing icing[J]. Acta Aeronautica et Astronautica Sinica202344(1): 41-52 (in Chinese).
23 郑梅, 冯丽娟, 秦娜, 等. 短舱防冰系统三维内外流耦合计算方法[J]. 航空学报202344(1): 89-102.
  ZHENG M, FENG L J, QIN N, et al. 3D computational method for conjugate heat transfer between internal and external flow of nacelle anti-icing system[J]. Acta Aeronautica et Astronautica Sinica202344(1): 89-102 (in Chinese).
24 SHIN J, BOND T. Experimental and computational ice shapes and resulting drag increase for a NACA 0012 airfoil[C]∥ 5th Symposium on Numerical and Physical Aspects of Aerodynamic Flows.1992.
文章导航

/