基于超声导波的积冰量辨识及定位方法
收稿日期: 2023-07-10
修回日期: 2023-08-03
录用日期: 2023-08-07
网络出版日期: 2023-08-11
基金资助
国家重大科技专项(J2019-Ⅲ-0010-0054);国家自然科学基金重点项目(12132019);中国博士后科学基金(2021MD703966)
Ice accumulation identification and localization method based on ultrasonic guided waves
Received date: 2023-07-10
Revised date: 2023-08-03
Accepted date: 2023-08-07
Online published: 2023-08-11
Supported by
National Major Science and Technology Project (J2019-Ⅲ-0010-0054);National Natural Science Foundation of China (Key Program)(12132019);China Postdoctoral Science Foundation(2021MD703966)
为实现飞机结冰区域化定量探测能力,提出了一种基于Lamb波的冰层定位和定量辨识方法。首先,建立了压电耦合的波动力学仿真模型,通过三维有限元数值计算分析了Lamb波在铝板、冰层中的传播特性及模态转换过程,选取S0/B1模态作为结冰监测模态,并建立了一种基于小波变换的信号分析方法以提取S0/B1模态波的时间延迟特征量。进一步,研究分析了不同冰层结构尺寸对Lamb波信号的影响规律。结果表明,随着冰层长度(波导传播方向上的积冰量)的增大,B1模态波的时延比线性增大;冰层宽度(波导传播展向垂直方向上的积冰量)对B1模态波时延存在一个影响区域,在影响区域内(冰层宽度不大于40 mm),时延比与冰层宽度成线性关系;冰层厚度与B1模态波时延比总体上具有正相关变化趋势,冰层厚度在1.5 mm以内时,其与时延比之间具有较好的线性关系。基于此,建立了Lamb波压电阵列定位成像的数值计算模型,并提出了一种自适应阈值概率重构算法,进一步采用时延比来表征探测区域内的积冰程度,最终验证了冰层的定位成像、结冰定量辨识的可行性,提升了超声导波结冰在线快速评估的能力,为超声导波结冰区域化定量探测奠定了基础。
张晏鑫 , 张鸿健 , 熊建军 , 赵照 , 冉林 , 易贤 . 基于超声导波的积冰量辨识及定位方法[J]. 航空学报, 2024 , 45(16) : 129293 -129293 . DOI: 10.7527/S1000-6893.2023.29293
To achieve regionalized quantitative detection of aircraft icing, we propose a method for ice layer localization and quantitative identification based on the Lamb waves. Firstly, a wave dynamic simulation model of piezoelectric coupling is established. The propagation characteristics and mode conversion process of the Lamb waves in the aluminum plate and ice layers are analyzed with the three-dimensional finite element method. The S0/B1 mode is selected as the icing monitoring mode, and a signal analysis method based on wavelet transform is developed to extract the time of delay of S0/B1 mode waves. Furthermore, the influence of different ice layer structural sizes on the Lamb wave signals is analyzed. It is found that the time of delay ratio of the B1 mode waves linearly increases with the increase in the ice layer length (ice accumulation in the direction of wave propagation). The ice layer width (ice accumulation in the direction perpendicular to the wave propagation) has a range of influence on the time delay of the B1 mode waves. For the range of ice layer width not exceeding 40 mm, the time of delay ratio has a linear relationship with the width of ice. The ice layer thickness shows an approximate positive correlation with the time of delay ratio of the B1 mode waves, and a good linear relationship exists between them within an ice layer thickness of 1.5 mm. Finally, a simulation model of the Lamb waves piezoelectric array is established, and a modified reconstruction algorithm for the probabilistic inspection is proposed. The ice accumulation level is characterized by the time of delay to verify the feasibility of ice layer localization imaging and quantitative identification in the detection area and improve the ability to rapidly evaluate icing online based on ultrasonic guided waves, laying the foundation for icing quantitative detection via ultrasonic guided waves.
1 | 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007: 1-17. |
YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang: China Aerodynamics Research and Development Center, 2007: 1-17 (in Chinese). | |
2 | 易贤, 李维浩, 王应宇, 等. 飞机结冰传感器安装位置确定方法[J]. 实验流体力学, 2018, 32(2): 48-54. |
YI X, LI W H, WANG Y Y, et al. Method of determining the location for aircraft icing prober[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 48-54 (in Chinese). | |
3 | 何磊, 钱炜祺, 董康生, 等. 基于卷积神经网络的结冰翼型气动特性建模[J]. 航空学报, 2023, 44(5): 59-72. |
HE L, QIAN W Q, DONG K S, et al. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 59-72 (in Chinese). | |
4 | 马乙楗, 柴得林, 王强, 等. 翼面结冰过程中的冰晶运动相变与黏附特性[J]. 航空学报, 2023, 44(1): 627817. |
MA Y J, CHAI D L, WANG Q, et al. Phase change and adhesion characteristics of ice crystal movements in wing icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627817 (in Chinese). | |
5 | 高郭池, 张波, 全敬泽, 等. 正常类飞机自然结冰试飞适航审定技术[J]. 航空学报, 2024, 45(1): 195-216. |
GAO G C, ZHANG B, QUAN J Z, et al. Airworthiness certification technology of normal aircraft natural icing flight test[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 195-216 (in Chinese). | |
6 | 王华, 王以伦, 张滨华. 基于磁致伸缩原理的结冰传感器设计理论[J]. 电工技术学报, 2003, 18(6): 77-79, 11. |
WANG H, WANG Y L, ZHANG B H. Theory of designing ice detector based on magnetostriction[J]. Transactions of China Electrotechnical Society, 2003, 18(6): 77-79, 11 (in Chinese). | |
7 | 白天, 朱春玲, 李清英, 等. 压电双晶片悬臂梁结构用于结冰探测的研究[J]. 航空学报, 2013, 34(5): 1073-1082. |
BAI T, ZHU C L, LI Q Y, et al. Study of bimorph piezoelectric cantilever structure used on icing detection[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1073-1082 (in Chinese). | |
8 | 尹胜生. 飞机机场地面结冰探测系统研究与设计[D]. 武汉: 华中科技大学, 2012: 1-12. |
YIN S S. Icing detection system for aircraft on airport ground[D]. Wuhan: Huazhong University of Science and Technology, 2012: 1-12 (in Chinese). | |
9 | 张镇, 葛俊锋, 叶林, 等. 基于神经网络的主动式红外结冰探测[J]. 华中科技大学学报(自然科学版), 2010, 38(6): 1-3. |
ZHANG Z, GE J F, YE L, et al. Active infrared icing detection using neural networks[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2010, 38(6): 1-3 (in Chinese). | |
10 | 张龙浩. 光纤阵列式结冰探测系统的研究[D]. 武汉: 华中科技大学, 2013. |
ZHANG L H. The research of optical fiber array icing detection system[D].Wuhan: Huazhong University of Science and Technology, 2013 (in Chinese). | |
11 | ZOU J H, YE L, GE J F, et al. Novel fiber optic sensor for ice type detection[J]. Measurement, 2013, 46(2): 881-886. |
12 | AMIROPOULOS K, SPASOPOULOS D, IKIADES A. Fiber optic sensor for ice detection on aerodynamic surfaces using plastic optic fiber tapers[C]∥Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF). Washington, D.C.: OSA, 2018: SeM4E.6. |
13 | 李洪宇, 桂康, 葛俊锋, 等. 基于阻抗测量阵列的区域结冰探测方法研究[J]. 科学技术创新, 2022(29): 179-182. |
LI H Y, GUI K, GE J F, et al. Area icing detection method based on impedance measurement array[J]. Scientific and Technological Innovation, 2022(29): 179-182 (in Chinese). | |
14 | 任宏宇, 苑丹丹, 桂康, 等. 复阻抗式结冰探测技术的温度补偿方法研究[J]. 仪器仪表学报, 2021, 42(6): 88-94. |
REN H Y, YUAN D D, GUI K, et al. A temperature compensation method for complex impedance ice detection[J]. Chinese Journal of Scientific Instrument, 2021, 42(6): 88-94 (in Chinese). | |
15 | 赵伟伟, 朱春玲, 陶明杰, 等. 超声导波技术用于飞机结冰探测的实验研究[J]. 压电与声光, 2018, 40(2): 269-275. |
ZHAO W W, ZHU C L, TAO M J, et al. Experimental study on ultrasonic guided wave technology for aircraft icing detection[J]. Piezoelectrics & Acoustooptics, 2018, 40(2): 269-275 (in Chinese). | |
16 | YANG L, CHEN W L, BOND L J, et al. A feasibility study to identify ice types by measuring attenuation of ultrasonic waves for aircraft icing detection[C]∥ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. New York: ASME, 2014:FEDS M2014-21227. |
17 | HSU D K, MARGETAN F J, WORMLEY S J, et al. Ultrasonic detection of icing onset and accretion thickness on aircraft[J]. The Journal of the Acoustical Society of America, 1993, 94(): 1804. |
18 | 刘琦. 基于超声导波的波导结构频散分析与覆冰响应[D]. 哈尔滨: 哈尔滨工程大学, 2017: 3-4. |
LIU Q. The ultrasonic guide-wave dispersion analysis of the waveguide structure and the icing response[D]. Harbin: Harbin Engineering University, 2017: 3-4 (in Chinese). | |
19 | ROSE J L. Ultrasonic Guided Waves in Solid Media[M]. Cambridge: Cambridge University Press, 2014. |
20 | NISSABOURI S, ALLAMI M EL, BAKHCHA M. Lamb waves propagation Plotting the dispersion curves[C]∥International Conference on Computing Wireless and Communication Systems. Morocco: EAI, 2016: 149-152. |
21 | NISSABOURI S, ALLAMI M EL, BOUTYOUR E H. Quantitative evaluation of semi-analytical finite element method for modeling Lamb waves in orthotropic plates[J]. Comptes Rendus Mécanique, 2020, 348(5): 335-350. |
22 | HUBER A. Numerical modeling of guided waves in anisotropic composites with application to air-coupled ultrasonic inspection[D]. Augsburg: University of Augsburg, 2020: 1-20. |
23 | HONGERHOLT D D, Willms G, Rose J L. Summary of results from an ultrasonic in-flight wing ice detection system[C]∥AIP Conference Proceedings. Melville: AIP, 2002: 1023-1028. |
24 | MENDIG C, RIEMENSCHNEIDER J, MONNER H P, et al. Ice detection by ultrasonic guided waves[J]. CEAS Aeronautical Journal, 2018, 9(3): 405-415. |
25 | SHOJA S, BERBYUK V, BOSTR?M A. Investigating the Application of Guided Wave Propagation for Ice Detection on Composite Materials[C]∥International Conference on Engineering Vibration. Ljubljana : Faculty for Mechanical Engineering, 2015:152-161. |
26 | SHOJA S, BERBYUK V, BOSTR?M A. Guided wave-based approach for ice detection on wind turbine blades[J]. Wind Engineering, 2018, 42(5): 483-495. |
27 | 白天. 基于压电材料的结冰探测与除冰方法[D]. 南京: 南京航空航天大学, 2015: 60-85. |
BAI T. Ice detection and deicing method based on piezoelectric materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 60-85. (in Chinese) | |
28 | 赵伟伟. 基于压电材料的飞机结冰探测系统[D]. 南京: 南京航空航天大学, 2018: 51-55. |
ZHAO W W. Aircraft icing detection system based on piezoelectric materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 51-55 (in Chinese). | |
29 | 张鸿健,张晏鑫,熊建军,等. 冰层中Lamb波传播特性的数值模拟和实验研究[J]. 实验流体力学, 2023, 37(2): 68-77. |
ZHANG H J, ZHANG Y X, XIONG J J, et al. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77 (in Chinese). | |
30 | 李远. 压电与铁电材料的测量[M]. 北京: 科学出版社, 1984: 36-40. |
LI Y. Measurement of piezoelectric and ferroelectric materials[M]. Beijing: Science Press, 1984: 36-40 (in Chinese). | |
31 | HUANG C H, LIN Y C, MA C C. Theoretical analysis and experimental measurement for resonant vibration of piezoceramic circular plates[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(1): 12-24. |
32 | 宋承天, 蒋志宏, 潘曦, 等. 随机信号分析与估计[M]. 北京: 北京理工大学出版社, 2018: 55-63. |
SONG C T, JIANG Z H, PAN X, et al. Random signals analysis and estimation[M]. Beijing: Beijing Insititute of Technology Press, 2018: 55-63 (in Chinese). | |
33 | 张志政. 基于功率谱密度的旋挖钻机桅杆振动疲劳寿命研究[D]. 西安: 长安大学, 2021: 15-20. |
ZHANG Z Z. Research on vibration fatigue life of rotary drilling rig mast based on power spectrum density[D]. Xi’an: Changan University, 2021: 15-20 (in Chinese). | |
34 | 周海林, 徐毅成, 刘美全, 等. 基于小波变换模极大值法的薄层材料超声测厚研究[J]. 仪表技术, 2010(3): 50-52. |
ZHOU H L, XU Y C, LIU M Q, et al. Thickness measurement on thin layer by ultrasonic based on the wavelet transform modulus maxima[J]. Instrumentation Technology, 2010(3): 50-52 (in Chinese). | |
35 | 关立强, 祝伟光, 李义丰. Lamb波时间反转椭圆定位和层析成像混合技术研究[J]. 南京大学学报(自然科学), 2019, 55(2): 191-201. |
GUAN L Q, ZHU W G, LI Y F. Research on hybrid techniques of Time-reversal Ellipse Location and Tomographic Imaging of Lamb wave[J]. Journal of Nanjing University (Natural Science), 2019, 55(2): 191-201 (in Chinese). | |
36 | SHEEN B, CHO Y. A study on quantitative lamb wave tomogram via modified RAPID algorithm with shape factor optimization[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(5): 671-677. |
/
〈 |
|
〉 |