高超声速风洞自由来流扰动热线测量技术
收稿日期: 2023-05-25
修回日期: 2023-06-16
录用日期: 2023-07-16
网络出版日期: 2023-08-11
Measurement of freestream disturbance in hypersonic wind tunnel with hot-wire anemometer
Received date: 2023-05-25
Revised date: 2023-06-16
Accepted date: 2023-07-16
Online published: 2023-08-11
高超声速来流扰动的类型和幅值对边界层转捩、激波/边界层干扰等流动现象有着重要影响。然而,目前对高超声速风洞背景扰动的了解极其有限,限制了相关问题研究。针对这一现状,使用高温热线高过热比和常规热线变过热比两种方法对华中科技大学马赫数为6的高超声速风洞中的自由流扰动开展了热线测量。两种方法得到的扰动幅值相对误差不超过15%,不同雷诺数质量流量和总温脉动归一化脉动均方根值分别在0.77%~1.25%和0.1%~0.18%。结合可压缩热线扰动图的方法验证了常规风洞中声波扰动占主导地位的假设,同时测得声波扰动方向约为120°~140°,对应声源速度约为0.67~0.78倍自由流速度。此外,基于高温热线的质量流量频谱,获得了40 kHz以下自由流声波静压扰动频谱,发现10 kHz以下低频部分扰动幅值约为10-8量级,而高频部分则发生-5/3斜率的滚降。本研究证实了可压缩热线测量技术应用于高超声速风洞自由流扰动测量的可行性,得到了扰动类型以及幅值的频域分布特性。
熊有德 , 李创创 , 张振辉 , 吴杰 . 高超声速风洞自由来流扰动热线测量技术[J]. 航空学报, 2024 , 45(10) : 129042 -129042 . DOI: 10.7527/S1000-6893.2023.29042
The types and levels of disturbances in hypersonic freestream have significant effects on the flow phenomena such as boundary layer transition and shock/boundary layer interactions. However, the understanding of the disturbances in hypersonic wind tunnels is currently limited, which restricts the relevant research. In response to this situation, two methods, the high-temperature hot-wire with a high over-heat ratio and the conventional hot-wire with variable over-heat ratios, were conducted to measure the freestream disturbances in the Mach number 6 hypersonic wind tunnel at Huazhong University of Science and Technology. The relative error of the disturbance amplitude derived by the two methods does not exceed 15%, and the normalized root mean square values of the mass flow rate and total temperature fluctuations at different Reynolds numbers are between 0.77%-1.25% and 0.1%-0.18%, respectively. The hypothesis that acoustic disturbances dominate in conventional wind tunnels was verified by using the fluctuation diagram of compressible hot-wire. Meanwhile, the direction of the acoustic disturbance was determined to be between 120° and 140°, which translates to a sound source velocity between 0.67 and 0.78 of the freestream velocities. Additionally, the spectrum of static pressure caused by the acoustic wave below 40 kHz was obtained using the mass flow spectrum of the high-temperature hot-wire. It emerged that the amplitude in low-frequency disturbance below 10 kHz had a magnitude of 10-8 and the high-frequency spectrum roll-off had a slope of -5/3. This study verified the viability of using constant-temperature anemometers for freestream disturbance measurement in hypersonic wind tunnels, and obtained the disturbance types and amplitudes of distribution characteristics in the frequency domain.
1 | 伍荣林, 王振羽. 风洞设计原理[M]. 北京: 北京航空学院出版社, 1985: 23-24. |
WU R L, WANG Z Y. Wind tunnel design principle[M]. Beijing: Beihang University Press, 1985: 23-24 (in Chinese). | |
2 | FEDOROV A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43: 79-95. |
3 | SCHNEIDER S P. Effects of high-speed tunnel noise on laminar-turbulent transition[J]. Journal of Spacecraft and Rockets, 2001, 38(3): 323-333. |
4 | WAN B B, CHEN J Q, YUAN X X, et al. Three-dimensional receptivity of a blunt-cone boundary layer to incident slow acoustic waves[J]. AIAA Journal, 2022, 60(8): 4523-4531. |
5 | WAN B B, SU C H, CHEN J Q. Receptivity of a hypersonic blunt cone: Role of disturbances in entropy layer[J]. AIAA Journal, 2020, 58(9): 4047-4054. |
6 | YAO Y, KRISHNAN L, SANDHAM N D, et al. The effect of Mach number on unstable disturbances in shock/boundary-layer interactions[J]. Physics of Fluids, 2007, 19(5): 054104. |
7 | 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. |
CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: What we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337 (in Chinese). | |
8 | COMTE-BELLOT G. Hot-wire anemometry[J]. Annual Review of Fluid Mechanics, 1976, 8: 209-231. |
9 | KOVASZNAY L S G. Turbulence in supersonic flow[J]. Journal of the Aeronautical Sciences, 1953, 20(10): 657-674. |
10 | MORKOVIN M V. On supersonic wind tunnels with low free-stream disturbances[J]. Journal of Applied Mechanics, 1959, 26(3): 319-324. |
11 | LAUFER J. Aerodynamic noise in supersonic wind tunnels[J]. Journal of the Aerospace Sciences, 1961, 28(9): 685-692. |
12 | LOGAN P. Modal analysis of hot-wire measurements in supersonic turbulence[C]∥AIAA 26th Aerospace Sciences Meeting. Reston: AIAA, 1988. |
13 | LOGAN P. Improved method of analyzing hot-wire measurements in supersonic turbulence[J]. AIAA Journal, 1989, 27: 115-117. |
14 | 杜钰锋, 林俊, 马护生, 等. 可压缩流体恒温热线风速仪校准方法[J]. 航空学报, 2017, 38(6): 120600. |
DU Y F, LIN J, MA H S, et al. Calibration method for constant temperature hot-wire anemometer for compressible fluid[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120600 (in Chinese). | |
15 | 杜钰锋, 林俊, 马护生, 等. 可压缩流湍流度变热线过热比测量方法[J]. 航空学报, 2017, 38(11): 121236. |
DU Y F, LIN J, MA H S, et al. Measurement technique for turbulence level in compressible fluid by changing overheat ratio of hot-wire[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 121236 (in Chinese). | |
16 | 杜钰锋, 林俊, 王勋年, 等. 变热线过热比可压缩流湍流度测量方法优化[J]. 航空学报, 2019, 40(12): 123067. |
DU Y F, LIN J, WANG X N, et al. Measurement technique optimization of turbulence level in compressible fluid by changing overheat ratio of hot wire anemometer[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 123067 (in Chinese). | |
17 | 杜钰锋, 林俊, 王勋年, 等. 亚声速风洞可压缩流体扰动模态分析[J]. 航空学报, 2021, 42(6): 124424. |
DU Y F, LIN J, WANG X N, et al. Analysis of modes of disturbances in compressible fluid in subsonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124424 (in Chinese). | |
18 | 朱博, 廖达雄, 陈振华, 等. 跨声速流场扰动模态与湍流度精细测量[J]. 航空学报, 2023, 44(4): 126378. |
ZHU B, LIAO D X, CHEN Z H, et al. Fine measurement for fluctuation mode and turbulence level in transonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126378 (in Chinese). | |
19 | 朱博, 熊波, 吴巍, 等. 定/变热线过热比跨超声速流场湍流度测量[J]. 航空动力学报, 2022, 37(9): 1815-1823. |
ZHU B, XIONG B, WU W, et al. Keeping and varying hot wire overheat ratio measurement for turbulence level in transonic and supersonic flow field[J]. Journal of Aerospace Power, 2022, 37(9): 1815-1823 (in Chinese). | |
20 | 余涛, 王俊鹏, 刘向宏, 等. 高超声速风洞来流扰动测量及数据后处理技术研究[J]. 实验流体力学, 2019, 33(5): 49-56. |
YU T, WANG J P, LIU X H, et al. Measurements and data processing technology of freestream fluctuations in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 49-56 (in Chinese). | |
21 | STAINBACK P, WAGNER R. A comparison of disturbance levels measured in hypersonic tunnels using a hot-wire anemometer and a pitot pressure probe[C]∥AIAA 7th Aerodynamic Testing Conference. Reston: AIAA, 1972. |
22 | BRUUN H H. Hot-wire anemometry: principles and signal analysis[M]. Oxford: Oxford Unversity Press, 1995. |
23 | WEISS J, KNAUSS H, WAGNER S, et al. Constant temperature hot-wire measurements in a short duration supersonic wind tunnel[J]. The Aeronautical Journal, 2001, 105(1050): 435-441. |
24 | KOVASZNAY L S G. The hot-wire anemometer in supersonic flow[J]. Journal of the Aeronautical Sciences, 1950, 17(9): 565-572. |
25 | VESSOT KING L. On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry[J]. Philosophical Transactions of the Royal Society of London Series A, 1914, 214: 373-432. |
26 | SPINA E F, MCGINLEY C B. Constant-temperature anemometry in hypersonic flow: Critical issues and Sample results[J]. Experiments in Fluids, 1994, 17(6): 365-374. |
27 | LAUFER J, MCCLELLAN R. Measurements of heat transfer from fine wires in supersonic flows[J]. Journal of Fluid Mechanics, 1956, 1(3): 276-289. |
28 | BALDWIN L V, SANDBORN V A, LAURENCE J C. Heat transfer from transverse and yawed cylinders in continuum, slip, and free molecule air flows[J]. Journal of Heat Transfer, 1960, 82(2): 77-86. |
29 | STALDER J R, GOODWIN G, CREAGER M O. Heat-transfer to bodies in a high-speed rarefied-gas stream: NACA-TR-1093[R]. Washington, D.C.: NACA, 1952. |
30 | STALDER J R, GOODWIN G, CREAGER M O. A comparison of theory and experiment for high-speed free-molecule flow: NACA-TR-1032[R]. Washington, D.C.: NACA, 1951. |
31 | WEISS J. Experimental determination of the free stream disturbance field in the short duration supersonic wind tunnel of stuttgart university[D]. Stuttgart: Stuttgart University, 2002: 35-36. |
32 | MORKOVIN M V. Fluctuations and hot-wire anemometry in compressible flows [R]. Brussels: NATO, 1956. |
33 | SCHNEIDER S P. Development of hypersonic quiet tunnels[J]. Journal of Spacecraft and Rockets, 2008, 45(4): 641-664. |
34 | BARRE S, ALEM D, BONNET J P. Experimental study of a normal shock/homogeneous turbulence interaction[J]. AIAA Journal, 1996, 34(5): 968-974. |
35 | WEISS J, KNAUSS H, WAGNER S. Method for the determination of frequency response and signal to noise ratio for constant-temperature hot-wire anemometers[J]. Review of Scientific Instruments, 2001, 72(3): 1904-1909. |
36 | SCHLATTER P, LI Q, BRETHOUWER G, et al. Structure of a turbulent boundary layer studied by DNS[C]∥Direct and Large-Eddy Simulation VIII. Dordrecht: Springer, 2011: 9-14. |
37 | MAI C L, BOWERSOX R D. Effect of a normal shock wave on freestream total pressure fluctuations in a low-density Mach 6 flow[C]∥Proceedings of the 44th AIAA Fluid Dynamics Conference. Reston: AIAA, 2014. |
38 | MUNOZ F, WU J, RADESPIEL R, et al. Freestream disturbances characterization in ludwieg tubes at Mach 6[C]∥Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
39 | KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1991, 434: 9-13. |
40 | DUAN L, CHOUDHARI M M, ZHANG C. Pressure Fluctuations induced by a Hypersonic Turbulent Boundary Layer[J]. Journal of Fluid Mechanics, 2016, 804: 578-607. |
41 | WALKER D A, NG W F, WALKER M D. Experimental comparison of two hot-wire techniques in supersonic flow[J]. AIAA Journal, 1989, 27(8): 1074-1080. |
42 | HILDEBRAND N, CHOUDHARI M M, DEEGAN C P, et al. Direct numerical simulation of acoustic disturbances in a hypersonic two-dimensional nozzle configuration[J]. AIAA Journal, 2022, 60(6): 3452-3463. |
/
〈 |
|
〉 |