基于横截函数的欠驱动航天器姿态跟踪方法(全驱系统专刊)

  • 段超 ,
  • 邵小东 ,
  • 胡庆雷 ,
  • 吴淮宁
展开
  • 1. 北京航空航天大学
    2. 北京航空航天大学 自动化科学与电气工程学院
    3. 北京航空航天大学自动化科学与电气工程学院

收稿日期: 2023-04-21

  修回日期: 2023-08-09

  网络出版日期: 2023-08-11

基金资助

基于跨尺度宏微协同的超精密空间光机跟瞄仪;空间非合作机动目标智能自主相对导航与控制研究;多约束下的空间翻滚目标安全逼近自主控制研究

Attitude tracking of underactuated spacecraft based on transverse functions

  • DUAN Chao ,
  • SHAO Xiao-Dong ,
  • HU Qing-Lei ,
  • WU Huai-Ning
Expand

Received date: 2023-04-21

  Revised date: 2023-08-09

  Online published: 2023-08-11

摘要

针对航天器姿态跟踪任务,考虑一种配置两个独立动量交换型执行机构的欠驱动航天器,提出了一种基于横截函数的任意姿态轨迹跟踪控制律。利用三维特殊正交群SO(3)建立航天器姿态运动学方程,并基于动量守恒条件,将动力学方程与运动学统一写成以执行机构输出角动量为控制输入的降阶系统。利用横截条件与Lie代数秩条件构造基于SO(3)的横截函数,其本质为能够任意逼近平衡点的一个嵌入子流形,并基于横截函数与姿态误差建立降阶跟踪控制系统的伴随系统。针对伴随系统,提出了一种光滑静态反馈控制律,利用Morse函数证明了对于任意轨迹闭环系统的最终有界稳定性。进一步针对可行轨迹,基于零动态系统设计了横截函数的参数自调整律,使得在零动态时横截函数趋近跟踪系统的平衡点,证明了闭环系统具有指数稳定性。最后,通过数值仿真验证了提出控制器的有效性。

本文引用格式

段超 , 邵小东 , 胡庆雷 , 吴淮宁 . 基于横截函数的欠驱动航天器姿态跟踪方法(全驱系统专刊)[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2023.28910

Abstract

For the spacecraft attitude tracking task, two independent actuators of momentum exchange type are considered for an underactu-ated spacecraft and arbitrary attitude trajectory tracking control law is proposed based on the transverse function. The kinematic equations of the rigid spacecraft attitude are established using the three-dimensional special orthogonal group SO(3), and the kinematic equations are unified with the kinematics based on the momentum conservation condition as a reduced-order system with the output angular momentum of the actuator as the control input. The transverse condition is used to construct the trans-verse function based on the Lie algebraic rank condition, which is essentially an embedded submanifold that can approach the equilibrium point arbitrarily, and the adjoint system of the reduced-order tracking control system is established based on the transverse function and the attitude error. For the accompanying system, a smooth static feedback control law is proposed, and the ultimately bounded stability of the closed-loop system for arbitrary trajectories is proved by using Morse function. Furthermore, for the feasible trajectory, the parameter adjustment law of the transverse function is designed based on the zero dynamic system, so that the transverse function converges to the equilibrium point of the tracking system at zero dynamic, and the closed-loop system is proved to have exponential stability. Finally, the effectiveness of the above controller is verified by numerical simula-tion.

参考文献

[1]Tafazoli M.A study of on-orbit spacecraft failures[J].Acta Astronautica, 2009, 64(2-3):195-205 [2] Uo M, Shirakawa K, Hashimoto T, et al.Attitude Con-trol Challenges and Solutions for Hayabusa Space-craft[C]//Astrodynamics Specialist Conference and Ex-hibit, AIAA/AAS, 2006: 2006-6534. [3]Crouch P.Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models[J].IEEE Transactions on Automatic Control, 1984, 29(4):321-331 [4]Krishnan H, Reyhanoglu M, Mcclamroch H.Attitude stabilization of a rigid spacecraft using two control tor-ques: A nonlinear control approach based on the space-craft attitude dynamics[J].Automatica, 1994, 30(6):1023-1027 [5]Brockett R W.Asymptotic stability and feedback stabilization[J].Differential Geometric Control Theory, 1983, :181-191 [6]Horri N M, Palmer P.Practical Implementation of Atti-tude-Control Algorithms for an Underactuated Satel-lite[J].Journal of Guidance, Control, and Dynamics, 2012, 35(1):40-50 [7]Tsiotras P, Luo J H.Control of underactuated spacecraft with bounded inputs[J].Automatica, 2000, 36(8):1153-1169 [8]Morin P, Samson C.Time-varying exponential stabiliza-tion of a rigid spacecraft with two control torques[J].IEEE Transactions on Automatic Control, 1997, 42(4):528-534 [9]Gui H C, Vukovich G.Robust adaptive spin-axis stabi-lization of a symmetric spacecraft using two bounded torques[J].Advances in Space Research, 2015, 56(11):2495-2507 [10]Godard, Kumar K D.Fault Tolerant Reconfigurable Satellite Formations Using Adaptive Variable Structure Techniques[J].Journal of Guidance, Control, and Dy-namics, 2010, 33(3):969-984 [11]Behal A, Dawson D, Zergeroglu E, et al.Nonlinear track-ing control of an underactuated spacecraft[J].Journal of Guidance, Control, and Dynamics, 2002, 25(5):979-985 [12]Li H P, Yan W S, Shi Y.Continuous-time model predic-tive control of under-actuated spacecraft with bounded control torques[J].Automatica, 2017, 75:144-153 [13]Petersen C D, Leve F, Kolmanovsky I.Model Predictive Control of an Underactuated Spacecraft with Two Reac-tion Wheels[J].Journal of Guidance, Control, and Dy-namics, 2017, 40(2):320-332 [14]Morin P, Samson C.Practical stabilization of driftless systems on Lie groups: The transverse function ap-proach[J].IEEE Transactions on Automatic Control, 2003, 48(9):1496-1508 [15]Lee U, Mesbahi M.Feedback Control for Spacecraft Reorientation Under Attitude Constraints Via Convex Potentials[J].IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4):2578-2592 [16]Lee D, Sanyal A K, Butcher E A.Asymptotic Tracking Control for Spacecraft Formation Flying with Decen-tralized Collision Avoidance[J].Journal of Guidance, Control, and Dynamics, 2015, 38(4):587-600 [17]Lee D, Vukovich G.Robust adaptive terminal sliding mode control on SE(3) for autonomous spacecraft ren-dezvous and docking[J].Nonlinear Dynamics, 2016, 83(4):2263-2279 [18] Lee T Y.Geometric Tracking Control of the Atti-tude Dynamics of a Rigid Body on SO(3)[C]\\Proceedings of the 2011 American Control Conference, IEEE, 2011: 1200-1205. [19]Biggs J D, Bai Y L, Henninger H.Attitude guidance and tracking for spacecraft with two reaction wheels[J].In-ternational Journal of Control, 2018, 91(4):926-936 [20]Biggs J D, Henninger H C.Motion Planning on a Class of 6-D Lie Groups via a Covering Map[J].IEEE Trans-actions on Automatic Control, 2019, 64(9):3544-3554 [21]Morin P, Samson C.Control of Nonholonomic Mobile Robots Based on the Transverse Function Approach[J].IEEE Transactions on Robotics, 2009, 25(5):1058-1073 [22]Morin P, Samson C.Control with transverse functions and a single generator of underactuated mechanical sys-tems[C]//Proceedings of the 45th IEEE Conference on Decision and Control, Vols 1-14, 2006: 6110-6115. [23]Gui H C, Vukovich G, Xu S J.Attitude Tracking of a Rigid Spacecraft Using Two Internal Torques[J].IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4):2900-2913 [24]Bullo F, Lewis A D.Geometric control of mechanical systems: modelling, analysis, and design for simple mechanical control systems[M]. Springer, New York, NY, 2005. [25] Gui H C, Jin L, Xu S J.Attitude maneuver control of a two-wheeled spacecraft with bounded wheel speeds[J]. Acta Astronautica, 2013, 88: 98-107.
文章导航

/