考虑冰层断裂与界面脱粘的电脉冲除冰仿真
收稿日期: 2023-07-11
修回日期: 2023-07-16
录用日期: 2023-07-25
网络出版日期: 2023-08-04
基金资助
国家自然科学基金重点项目(12132019)
Simulation of electro-impulse de-icing considering ice fracture and interface debonding
Received date: 2023-07-11
Revised date: 2023-07-16
Accepted date: 2023-07-25
Online published: 2023-08-04
Supported by
National Natural Science Foundation of China(12132019)
电脉冲除冰系统具备重量轻、能耗低、效率高等诸多优势,在飞机除冰领域应用前景广阔。基于损伤力学原理,考虑了界面脱粘、冰层断裂与裂纹扩展对冰脱落的影响机制,发展了一套电脉冲除冰有限元模型,对电脉冲除冰过程进行了瞬态动力学仿真。通过对仿真模型与实验结果进行比对分析,证实了该模型较传统模型具有更高的准确性和合理性,为电脉冲除冰系统设计提供了新的、更精确的仿真手段。此外,还对一系列影响冰脱落的关键参数进行了深入探讨,包括冰层断裂强度、断裂能、冰层与蒙皮之间的法向粘附强度以及剪切粘附强度等。研究表明,影响电脉冲除冰效果最显著的因素是冰层与蒙皮之间的界面剪切强度,这些发现有助于促进复合式防除冰系统的设计,从而实现更高的除冰效率。
黄永杰 , 倪章松 , 潘捷 . 考虑冰层断裂与界面脱粘的电脉冲除冰仿真[J]. 航空学报, 2023 , 44(S2) : 729306 -729306 . DOI: 10.7527/S1000-6893.2023.29306
Electro-impulse de-icing systems offer numerous advantages, such as lightweight construction, low energy consumption, and high efficiency, which make them highly promising in the field of aircraft de-icing applications. Drawing on the principles of damage mechanics, this paper takes into account the effects of interface delamination, ice layer fracture, and crack propagation on ice removal mechanisms. A finite element model for electro-impulse de-icing is developed, and transient dynamic simulations of the electro-impulse de-icing process are conducted. By comparing the simulation model with experimental results, it is demonstrated that the proposed model provides more accurate and reasonable predictions than traditional models, offering a new, precise simulation approach for designing electro-impulse de-icing systems. Furthermore, the study delves deeply into a series of key parameters affecting ice removal, including ice layer fracture strength, fracture energy, normal adhesive strength at the ice/skin interface, and shear adhesive strength. The findings show that the most significant factor influencing electro-impulse de-icing efficiency is the shear strength at the ice/skin interface. These findings contribute to the design of composite anti-icing and de-icing systems, ultimately leading to higher de-icing efficiency.
1 | 曾天翔. 飞机事故及其原因统计分析[J]. 航空标准化与质量, 1998(6): 37-43. |
ZENG T X. Statistical analysis of aircraft accidents and their causes[J]. Aeronautic Standardization & Quality, 1998(6): 37-43 (in Chinese). | |
2 | WEI Y, XU H J, XUE Y, et al. Quantitative assessment and visualization of flight risk induced by coupled multi-factor under icing conditions[J]. Chinese Journal of Aeronautics, 2020, 33(8): 2146-2161. |
3 | GORAJ Z. An overview of the deicing and anti-icing technologies with prospects for the future[C]∥Proceedings of the 24th international congress of the aeronautical sciences. Yokohama: Warsaw University of Technology, 2004: 1-22. |
4 | 唐超, 谢文俊, 袁培毓, 等. 翼面前缘共形电热除冰功能结构开发与验证[J]. 航空学报, 2023, 44(12): 331-341. |
TANG C, XIE W J, YUAN P Y, et al. Development and verification of a conformal electrothermal deicing functional structure for leading edge of airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 331-341 (in Chinese). | |
5 | 刘晓林, 朱彦曈, 王泽, 等. 飞行器仿生防冰涂层技术现状与趋势[J]. 航空学报, 2022, 43(10): 527331. |
LIU X L, ZHU Y T, WANG Z, et al. Research progress and development trend of bio-inspired anti-icing coatings for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527331 (in Chinese). | |
6 | POTAPCZUK M G. Aircraft icing research at NASA Glenn research center[J]. Journal of Aerospace Engineering, 2013, 26(2): 260-276. |
7 | 李清英, 朱春玲, 白天. 电脉冲除冰系统除冰激励的简化与影响因素[J]. 航空学报, 2012, 33(8): 1384-1393. |
LI Q Y, ZHU C L, BAI T. Simplification of de-icing excitation and influential factors of the electro-impulse de-icing system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1384-1393 (in Chinese). | |
8 | GUO F, CHANG S N. Design test of electro- impulse de-icing system of an aircraft[C]∥2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC). Piscataway: IEEE Press, 2011: 3918-3921. |
9 | 董文俊, 张永杰, 赵宾宾. 飞机电脉冲除冰技术研究进展[J]. 山东工业技术, 2015(16): 185-186. |
DONG W J, ZHANG Y J, ZHAO B B. Research progress of aircraft electrical pulse deicing technology[J]. Shandong Industrial Technology, 2015(16): 185-186 (in Chinese). | |
10 | LI Q Y, ZHU C L, BAI T A. Numerical simulation and experimental verification of the electro-impulse de-icing system[C]∥Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2012. |
11 | ZUMWALT G, FRIEDBERG R. Designing an electro-impulse de-icing system[C]∥Proceedings of the 24th Aerospace Sciences Meeting. 1986. |
12 | AL-KHALIL K. Thermo-mechanical expulsive deicing system-TMEDS[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007. |
13 | 景向嵘, 程盼, 罗振兵, 等. 电弧放电激励器破除冰特性及裂纹扩展规律[J]. 航空学报, 2022, 43(): 207-216. |
JING X R, CHENG P, LUO Z B, et al. Ice breaking characteristics and crack propagation law of arc discharge plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(Sup 2): 207-216 (in Chinese). | |
14 | KANDAGAL S B, VENKATRAMAN K. Piezo-actuated vibratory deicing of a flat plate[C]∥Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2005. |
15 | PALACIOS J L. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades[D]. Stadtkolich: The Pennsylvania State University, 2008. |
16 | KHATKHATE A, SCAVUZZO R, CHU M. A finite element study of the EIDI system[C]∥Proceedings of the 26th Aerospace Sciences Meeting. 1988. |
17 | LABEAS G N, DIAMANTAKOS I D, SUNARIC M M. Simulation of the electroimpulse de-icing process of aircraft wings[J]. Journal of Aircraft, 2006, 43(6): 1876-1885. |
18 | 张永杰, 董文俊, 王斌团, 等. 电脉冲除冰仿真冰层松脱准则研究[J]. 计算机工程与应用, 2012, 48(3): 232-233, 245. |
ZHANG Y J, DONG W J, WANG B T, et al. Study on de-icing criterion of electro-impulse de-icing simulation[J]. Computer Engineering and Applications, 2012, 48(3): 232-233, 245 (in Chinese). | |
19 | 崔哲. 脉冲参数对机翼电脉冲除冰效果影响的仿真研究[D]. 武汉: 华中科技大学, 2020: 50-86. |
CUI Z. Simulation study on the influence of pulse parameters on the wing electrical pulse de-icing effect[D]. Wuhan: Huazhong University of Science and Technology, 2020: 50-86 (in Chinese). | |
20 | 王洋洋. 微功耗飞机电脉冲除冰系统理论与实验研究[D]. 重庆: 重庆大学, 2020: 34-74. |
WANG Y Y. Theoretical and experimental research of the electro-impulse de-icing system for aircraft[D]. Chongqing: Chongqing University, 2020: 34-74 (in Chinese) . | |
21 | HUANG Y J, YI X, LIU Q L, et al. Simulation of electro-impulse de-icing process based on an improved ice shedding criterion[C]∥China Aeronautical Science and Technology Youth Science Forum. Singapore: Springer, 2023: 623-634. |
22 | SONG Y, LI S F, ZHANG S. Peridynamic modeling and simulation of thermo-mechanical de-icing process with modified ice failure criterion[J]. Defence Technology, 2021, 17(1): 15-35. |
23 | SYSTèMES D. ABAQUS Documentation (Version 6.13)[EB/OL]. Providence, RI, 2013. |
24 | REICH A. Ice property/structure variations across the glaze/rime transition[C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. 1992. |
25 | ANDREWS E H, LOCKINGTON N A. The cohesive and adhesive strength of ice[J]. Journal of Materials Science, 1983, 18(5): 1455-1465. |
26 | SOMMERWERK H, LUPLOW T, HORST P. Numerical simulation and validation of electro-impulse de-icing on a leading edge structure[J]. Theoretical and Applied Fracture Mechanics, 2020, 105: 102392. |
27 | ZHANG Y J, LIANG K, LAN H, et al. Modelling electro-impulse de-icing process in leading edge structure and impact fatigue life prediction of rivet holes in critical areas[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(5): 1117-1131. |
28 | ENDRES M, SOMMERWERK H, MENDIG C, et al. Experimental study of two electro-mechanical de-icing systems applied on a wing section tested in an icing wind tunnel[J]. CEAS Aeronautical Journal, 2017, 8(3): 429-439. |
29 | GOODMAN D J, TABOR D. Fracture toughness of ice: a preliminary account of some new experiments[J]. Journal of Glaciology, 1978, 21(85): 651-660. |
30 | PERVIER M A, HAMMOND D W. Measurement of the fracture energy in mode I of atmospheric ice accreted on different materials using a blister test[J]. Engineering Fracture Mechanics, 2019, 214: 223-232. |
/
〈 |
|
〉 |