抑冰功能型表面的耐磨耐蚀特性
收稿日期: 2023-07-10
修回日期: 2023-07-17
录用日期: 2023-07-24
网络出版日期: 2023-08-04
基金资助
国家自然科学基金(52076212);天津市研究生科研创新项目(2022SKYZ359)
Wear and corrosion resistance characteristics of ice suppression functional surface
Received date: 2023-07-10
Revised date: 2023-07-17
Accepted date: 2023-07-24
Online published: 2023-08-04
Supported by
National Natural Science Foundation of China(52076212);Tianjin Graduate Research Innovation Project Funding(2022SKYZ359)
飞机积冰是高性能飞行器安全运行的巨大威胁,也是导致飞机失事的主要原因之一。相对于传统被动式的融霜除冰手段,对表面进行微织构功能化处理是从机制上实现主动抗结冰的方法,该方法已经得到普遍认可和广泛应用,但微织构后表面的耐蚀耐磨等宏观应用性能有待深入研究。基于激光微织构技术在航空用材Ti-6Al-4V试样表面分别用扫描速度为50、100、150、200、250 mm/s的纳秒激光织构出三角纹理微纳结构。利用扫描电子显微镜和共聚焦电子显微镜对微织构表面的微区形貌、元素含量、粗糙度进行表征,使用接触角测量仪对微织构表面的静/动态浸润特性进行了分析,依托低温显微实验平台研究微结构表面静态水滴冻结行为,采用自制循环摩擦实验系统、电化学工作站研究微结构表面耐磨耐蚀性能。结果表明,扫描速度为100 mm/s的微织构表面延迟水滴冻结性能最佳,循环摩擦下疏水耐候性最佳,但表面耐腐蚀性能最差。这是由于表面丰富的微观拓扑结构形貌增大了表面的导热热阻,延迟了表面液滴冻结时间,但在弱酸性腐蚀环境下,表面丰富的微织构形貌又减小了氢氧化钛、氧化钛氢氧根等氧化物水合产物的吸附抑制,表现出较强的活性。
关键词: Ti-6Al-4V(TC4); 超疏水; 抑冰; 耐腐蚀; 耐磨
崔静 , 白娟 , 牛书鑫 , 王一凡 , 杨广峰 , 王立文 . 抑冰功能型表面的耐磨耐蚀特性[J]. 航空学报, 2023 , 44(S2) : 729288 -729288 . DOI: 10.7527/S1000-6893.2023.29288
Aircraft ice accumulation is a huge threat to the safe operation of high-performance aircraft and one of the main causes of aircraft crashes. Compared with the traditional passive defrosting and de-icing method, the functionalization of micro-texture on the surface is a method to achieve active anti-icing in terms of mechanism, which has been widely recognized and widely used. But the macroscopic application performance such as corrosion resistance and wear resistance of the surface after micro-texture needs to be thoroughly studied. Based on laser micro-texting technology, the triangular texture micro-nano structure was constructed with nanosecond lasers with scanning speeds of 50, 100, 150, 200 and 250 mm/s on the surface of Ti-6Al-4V specimens of aviation materials. Scanning electron microscope and confocal electron microscope were used to characterize the micro-texture morphology, element content and roughness of the micro-texture surface. The static/dynamic wetting characteristics of the micro-texture surface were analyzed by contact angle measuring instrument, and the freezing behavior of static water droplets on the microstructure surface was studied by the low-temperature microscopy experimental platform. Moreover, the wear and corrosion resistance of the microstructure surface was studied by self-made cyclic friction experimental system and electrochemical workstation. The results show that the surface of the micro-texture with a scanning speed of 100 mm/s has the best delayed water droplet freezing performance, the best hydrophobic and weather resistance under cyclic friction, but the worst surface corrosion resistance. This is due to the rich microtopology and morphology of the surface, which increase the thermal resistance of the surface and delay the freezing time of the surface droplets; but in the weak acid corrosion environment, the rich micro-texture morphology of the surface reduces the adsorption inhibition of oxide hydration products such as titanium hydroxide and titanium oxide hydroxide, and shows strong activity.
1 | 徐孟嘉, 刘博生, 毕晓阳, 等. 激光加工双级结构对Al/CFRPEEK接头组织及性能的影响[J]. 航空学报, 2022, 43(2): 624620. |
XU M J, LIU B S, BI X Y, et al. Effect of laser textured dual-scale structure on microstructure and mechanical property of Al/CFRPEEK joint[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 624620 (in Chinese). | |
2 | 张加波, 张开虎, 范洪涛, 等. 纤维复合材料激光加工进展及航天应用展望[J]. 航空学报, 2022, 43(4): 525735. |
ZHANG J B, ZHANG K H, FAN H T, et al. Progress in laser processing of fiber composite materials and prospects of its applications in aerospace[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525735 (in Chinese). | |
3 | 王津, 杨辉, 王莉平, 等. 防冰疏水微结构表面的设计[J]. 航空学报, 2017, 38(): 721522. |
WANG J, YANG H, WANG L P, et al. Design of anti-icing and hydrophobic microstructure surface[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(Sup 1): 721522 (in Chinese). | |
4 | LIU Y, WU M Y, ZHANG Z Y, et al. A review on applications of functional superhydrophobic surfaces prepared by laser biomimetic manufacturing[J]. Journal of Materials Science, 2023, 58(8): 3421-3459. |
5 | ZHANG Q Q, ZHANG H C. Corrosion resistance and mechanism of micro-nano structure super-hydrophobic surface prepared by laser etching combined with coating process[J]. Anti-Corrosion Methods and Materials, 2019, 66(3): 264-273. |
6 | 闫德峰, 刘子艾, 潘维浩, 等. 多功能超疏水表面的制造和应用研究现状[J]. 表面技术, 2021, 50(5): 1-19. |
YAN D F, LIU Z A, PAN W H, et al. Research status on the fabrication and application of multifunctional superhydrophobic surfaces[J]. Surface Technology, 2021, 50(5): 1-19 (in Chinese). | |
7 | KIRIENKO D A, BEREZINA O Y. On the detachment of thin ITO films from silicon substrate by microsecond laser irradiation[J]. Semiconductors, 2017, 51(6): 823-827. |
8 | WEI X Y, WEN Q L, CHEN J H, et al. Research on gold film-assisted ultraviolet nanosecond laser machining of diamond microgrooves[J]. Optics Laser Technology, 2023, 158: 108793. |
9 | 郑卜祥, 姜歌东, 王文君, 等. 超快脉冲激光对钛合金的烧蚀特性与作用机理[J]. 西安交通大学学报, 2014, 48(12): 21-28. |
ZHENG B X, JIANG G D, WANG W J, et al. Ablation characteristics and interaction mechanism of ultra-fast pulse laser-induced damage in titanium alloy[J]. Journal of Xi’an Jiaotong University, 2014, 48(12): 21-28 (in Chinese). | |
10 | HU S T, REDDYHOFF T, PUHAN D, et al. Droplet manipulation of hierarchical steel surfaces using femtosecond laser fabrication[J]. Applied Surface Science, 2020, 521: 146474. |
11 | CHEN J W, ZHANG C H, ZHOU F Q, et al. Microstructural, electrochemical and wear-corrosion characterization of TC4-5Cu alloy fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2021, 874: 159953. |
12 | WILLIAMS J C, BOYER R R. Opportunities and issues in the application of titanium alloys for aerospace components[J]. Metals, 2020, 10(6): 705. |
13 | ALAMRI S, VERCILLO V, AGUILAR-MORALES A I, et al. Self-limited ice formation and efficient de-icing on superhydrophobic micro-structured airfoils through direct laser interference patterning[J]. Advanced Materials Interfaces, 2020, 7(22): 2001231. |
14 | 于庆华, 于世胜, 王帅, 等. 纳秒激光制备超疏水TC4钛合金表面的抗结霜性能[J]. 机械工程材料, 2022, 46(6): 84-90, 97. |
YU Q H, YU S S, WANG S, et al. Frost resistance of superhydrophobic TC4 titanium alloy surface by nanosecond laser[J]. Materials for Mechanical Engineering, 2022, 46(6): 84-90, 97 (in Chinese). | |
15 | GUO C F, ZHANG M J, HU J. Icing delay of sessile water droplets on superhydrophobic titanium alloy surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621: 126587. |
16 | BAO Y T, FU B G, JIAO Y L, et al. Study of wear and corrosion resistance of cold sprayed TC4 coating on the surface of Mg-Li alloy[J]. Coatings, 2023, 13(6): 988. |
17 | 连峰, 谭家政, 张会臣. 超疏水钛合金表面制备及其抗海洋生物附着性能[J]. 稀有金属材料与工程, 2014, 43(9): 2267-2271. |
LIAN F, TAN J Z, ZHANG H C. Preparation of superhydrophobic titanium alloy surface and its antifouling of halobios[J]. Rare Metal Materials and Engineering, 2014, 43(9): 2267-2271 (in Chinese). | |
18 | STEELE A, NAYAK B K, DAVIS A, et al. Linear abrasion of a titanium superhydrophobic surface prepared by ultrafast laser microtexturing[J]. Journal of Micromechanics and Microengineering, 2013, 23(11): 115012. |
19 | KUCZY?SKA-ZEM?A D, SOTNICZUK A, PISAREK M, et al. Corrosion behavior of titanium modified by direct laser interference lithography[J]. Surface and Coatings Technology, 2021, 418: 127219. |
20 | XIE R Z, LIN N M, ZHOU P, et al. Surface damage mitigation of TC4 alloy via micro arc oxidation for oil and gas exploitation application: Characterizations of microstructure and evaluations on surface performance[J]. Applied Surface Science, 2018, 436: 467-476. |
/
〈 |
|
〉 |