NNW⁃ICE软件的三维结冰模型及精度验证
收稿日期: 2023-06-16
修回日期: 2023-07-21
录用日期: 2023-07-25
网络出版日期: 2023-08-04
基金资助
国家自然科学基金(12202471);四川省自然科学基金(2023NSFSC1332)
Three⁃dimensional model for ice accretion in NNW⁃ICE software and validation of its precision
Received date: 2023-06-16
Revised date: 2023-07-21
Accepted date: 2023-07-25
Online published: 2023-08-04
Supported by
National Natural Science Foundation of China(12202471);Natural Science Foundation of Sichuan Province(2023NSFSC1332)
结冰现象严重危害飞行器的飞行安全,而数值模拟是研究结冰的重要手段之一。NNW-ICE软件是一款由中国空气动力研究与发展中心开发的中国完全自主可控的结冰数值模拟软件。该软件中的三维结冰相变模型相比于传统的SWIM、Myers模型增加考虑了表面接触角对水膜流动的影响,且能量方程中增加考虑了伴有蒸发现象的霜冰结冰。数值计算方法方面,软件采用有限体积法对方程进行离散,拓展了模型对于复杂几何构型的非结构网格的适用性,并且集成了一阶显式、四阶四步龙格库塔-显式、一阶隐式、二阶一步龙格-库塔隐式共4个求解器。本文还采用了冰风洞试验结果、商业软件FENSAP-ICE计算结果对软件精度进行了验证。结果表明:NNW-ICE软件的计算结果与冰风洞试验结果吻合均较好,且精度总体优于FENSAP-ICE软件。
陈宁立 , 易贤 , 王强 , 任靖豪 . NNW⁃ICE软件的三维结冰模型及精度验证[J]. 航空学报, 2024 , 45(12) : 129188 -129188 . DOI: 10.7527/S1000-6893.2023.29188
Icing is a serious threat to the flight safety of aircraft, and numerical simulation is one of the important methods for studying icing. The NNW-ICE software is a completely independent and controllable icing numerical simulation software developed by China Aerodynamics Research and Development Center. The three-dimensional icing model in the software additionally considers the rime ice accretion with evaporation in the energy equation and the influence of surface contact angles on water film flow compared with traditional Shallow Water Icing Model (SWIM) and Myers icing models. In terms of numerical calculation methods, the software uses the finite volume method to discretize equations, expands the applicability of the model to unstructured grids of complex geometries, and integrates multiple solvers such as first-order explicit solver, fourth-order four-step Runge-Kutta explicit solver, first-order implicit solver, and second-order one-step Runge-Kutta implicit solver. This study also verifies the accuracy of the software with ice wind tunnel test results and results calculated by the commercial software FENSAP-ICE. The results of NNW-ICE are in good agreement with the experimental results, and the overall accuracy is better than that of the FENSAP-ICE software.
1 | 赵宾宾, 张恒, 李杰. 翼型结冰状态复杂分离流动数值模拟综述[J]. 航空学报, 2023, 44(1): 627211. |
ZHAO B B, ZHANG H, LI J. Review of numerical simulation on complex separated flow of iced airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627211 (in Chinese). | |
2 | 郭琪磊, 桑为民, 牛俊杰, 等. 复杂气象条件下考虑结冰风险的无人机飞行策略[J]. 航空学报, 2023, 44(1): 627518. |
GUO Q L, SANG W M, NIU J J, et al. UAV flight strategy considering icing risk under complex meteorological conditions[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627518 (in Chinese). | |
3 | 伍强, 徐浩军, 魏扬, 等. 结冰条件下飞机气动/运动耦合特性[J]. 航空学报, 2022, 43(8): 125566. |
WU Q, XU H J, WEI Y, et al. Aerodynamics/flight dynamics coupling characteristics of aircraft under icing conditions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125566 (in Chinese). | |
4 | 黄雄, 曲仕茹, 张恒, 等. 大型客机增升构型缝翼除冰状态失速特性[J]. 航空学报, 2023, 44(1): 627077. |
HUANG X, QU S R, ZHANG H, et al. Stall performance of high-lift configuration of large civil aircraft with slat de-icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627077 (in Chinese). | |
5 | 卜雪琴, 李皓, 黄平, 等. 二维机翼混合相结冰数值模拟[J]. 航空学报, 2020, 41(12): 124085. |
BU X Q, LI H, HUANG P, et al. Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124085 (in Chinese). | |
6 | 陈宁立, 杜健民, 吉洪湖, 等. 离心力对于旋转叶片表面积冰影响的数值模拟研究[J]. 推进技术, 2020, 41(6): 1314-1323. |
CHEN N L, DU J M, JI H H, et al. Numerical study of effects of centrifugal force on ice accretion on a rotor blade[J]. Journal of Propulsion Technology, 2020, 41(6): 1314-1323 (in Chinese). | |
7 | WRIGHT B W. User’s manual for LEWICE version 3.2:NASA/CR 2008-2142355[R]. Washington, D. C.: NASA, 2008. |
8 | 任靖豪, 王强, 李维浩, 等. 基于梯度下降的水滴收集率计算方法[J]. 航空学报, 2023, 44(4): 126381. |
REN J H, WANG Q, LI W H, et al. A prediction algorithm of collection efficiency based on gradient descent method[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126381 (in Chinese). | |
9 | XIE L, LI P Z, CHEN H, et al. Robust and efficient prediction of the collection efficiency in icing accretion simulation for 3D complex geometries using the Lagrangian approach I: An adaptive interpolation method based on the restricted radial basis functions[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119290. |
10 | 周志宏, 李凤蔚, 李广宁. 基于两相流欧拉方法的翼型结冰数值模拟[J]. 西北工业大学学报, 2010, 28(1): 138-142. |
ZHOU Z H, LI F W, LI G N. Applying eulerian droplet impingement model to numerically simulating ice accretion but with some improvements[J]. Journal of Northwestern Polytechnical University, 2010, 28(1): 138-142 (in Chinese). | |
11 | BOURGAULT Y, HABASHI W G, DOMPIERRE J, et al. A finite element method study of Eulerian droplets impingement models[J]. International Journal for Numerical Methods in Fluids, 1999, 29(4): 429-449. |
12 | HAN H, YIN Z F, NING Y J, et al. Development of a 3D eulerian/lagrangian aircraft icing simulation solver based on OpenFOAM[J]. Entropy, 2022, 24(10): 1365. |
13 | MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42. |
14 | 易贤, 桂业伟, 朱国林. 飞机三维结冰模型及其数值求解方法[J]. 航空学报, 2010, 31(11): 2152-2158. |
YI X, GUI Y W, ZHU G L. Numerical method of a three-dimensional ice accretion model of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2152-2158 (in Chinese). | |
15 | BOURGAULT Y, BEAUGENDRE H, HABASHI W G. Development of a shallow-water icing model in FENSAP-ICE[J]. Journal of Aircraft, 2000, 37(4): 640-646. |
16 | BEAUGENDRE H, MORENCY F, HABASHI W. ICE3D, FENSAP-ICE’s 3D in-flight ice accretion module[C]∥ Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. |
17 | MYERS T G, CHARPIN J P F, CHAPMAN S J. The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface[J]. Physics of Fluids, 2002, 14(8): 2788-2803. |
18 | MYERS T G, CHARPIN J P F. A mathematical model for atmospheric ice accretion and water flow on a cold surface[J]. International Journal of Heat and Mass Transfer, 2004, 47(25): 5483-5500. |
19 | MYERS T G, CHARPIN J P F, THOMPSON C P. Slowly accreting ice due to supercooled water impacting on a cold surface[J]. Physics of Fluids, 2002, 14(1): 240-256. |
20 | 雷梦龙, 常士楠, 杨波. 基于Myers模型的三维结冰数值仿真[J]. 航空学报, 2018, 39(9): 121962. |
LEI M L, CHANG S N, YANG B. Three-dimensional numerical simulation of icing using Myers model[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9): 121962 (in Chinese). | |
21 | CHEN N L, JI H H, CAO G Z, HU Y P, A three-dimensional mathematical model for simulating ice accretion on helicopter rotors[J]. Physics of Fluids, 2018, 30(8): 083602. |
22 | CHEN N L, HU Y P, JI H H, et al. A mathematical model based on unstructured mesh for ice accretion[J]. AIP Advances, 2019, 9(12): 125149. |
23 | 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(S1): 107-122. |
LI H R, DUAN Y Y, ZHANG Y F, et al. Key numerical methods in the icing simulation software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 107-122 (in Chinese). | |
24 | 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J]. 中国科学: 技术科学, 2021, 51(11): 1326-1347. |
CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. Scientia Sinica (Technologica), 2021, 51(11): 1326-1347 (in Chinese). | |
25 | CHILTON T H, COLBURN A P. Mass transfer (absorption) coefficients prediction from data on heat transfer and fluid friction[J]. Industrial & Engineering Chemistry, 1934, 26(11): 1183-1187. |
26 | CHEN N L, YI X, WANG Q, et al. Numerical study on wind-driven thin water film runback on an airfoil[J]. AIAA Journal, 2023, 61(6): 2517-2525. |
27 | WRIGHT W. Validation results for lewice 3.0:NASA/CR-1999-208690[R]. Washington, D. C.: NASA, 2013 |
28 | LAURENDEAU E, BOURGAULT-COTE S, OZCER I A, et al. Summary from the 1st AIAA ice prediction workshop[C]∥ Proceedings of the AIAA AVIATION 2022 Forum. Reston: AIAA, 2022. |
/
〈 |
|
〉 |