流体力学与飞行力学

尾部推进无人机双90°偏折进气道/蜗壳耦合流动特性

  • 郑高杰 ,
  • 何小明 ,
  • 李东坡 ,
  • 谭慧俊 ,
  • 汪昆 ,
  • 吴祯龙 ,
  • 王德鹏
展开
  • 1.南京航空航天大学 能源与动力学院,南京  210016
    2.中航(成都)无人机系统股份有限公司,成都  610000
.E-mail: lidongpo_1990@163.com

收稿日期: 2023-03-31

  修回日期: 2023-04-17

  录用日期: 2023-07-24

  网络出版日期: 2023-08-04

基金资助

国家杰出青年科学基金(12025202);民用飞机专项科研项目(MJ-2020-F-10)

Double 90° deflection inlet/volute coupling flow characteristics of tail-powered unmanned aerial vehicle

  • Gaojie ZHENG ,
  • Xiaoming HE ,
  • Dongpo LI ,
  • Huijun TAN ,
  • Kun WANG ,
  • Zhenlong WU ,
  • Depeng WANG
Expand
  • 1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
    2.AVIC (CHENGDU) Unmanned Aerial Vehicle System Co. ,Ltd. ,Chengdu  610000,China

Received date: 2023-03-31

  Revised date: 2023-04-17

  Accepted date: 2023-07-24

  Online published: 2023-08-04

Supported by

National Science Fund for Distinguished Young Scholars(12025202);Civil Airplane Technology Development Program(MJ-2020-F-10)

摘要

针对尾部螺旋桨推进式无人机的流道布局特点,兼顾飞行器总体气动、总体结构、雷达隐身等方面的限制因素,设计了1种具有双90°偏折特征的进气道/蜗壳流道构型,并对其在地面抽吸工况下的气动性能和内部流动特征开展了仿真与试验研究。研究表明:蜗壳出口马赫数在0.4~0.6范围内,总压恢复系数均保持在0.97以上,总压畸变小于1.30%,为此流道构型气动性能良好。然而,在进气道/蜗壳耦合流动作用下,出口截面形成了显著的旋流流动,研究范围内平均旋流强度为9.90°~11.35°,旋流角大于15°的面积占比达到了20.4%~30.6%。分析发现,进气道因流道剧烈弯曲而引起的蜗壳非均匀进气条件,是驱动蜗壳内形成强横向二次流与分离涡,进而导致出口强旋流流动的主要原因。

本文引用格式

郑高杰 , 何小明 , 李东坡 , 谭慧俊 , 汪昆 , 吴祯龙 , 王德鹏 . 尾部推进无人机双90°偏折进气道/蜗壳耦合流动特性[J]. 航空学报, 2024 , 45(4) : 128782 -128782 . DOI: 10.7527/S1000-6893.2023.28782

Abstract

An inlet/volute flow channel configuration with double 90° deflection characteristics is designed based on the inlet layout characteristics of the tail-propelled UAV, taking into account the constraints of the overall aerodynamics, overall structure, radar stealth and other aspects of the aircraft. Its aerodynamic performance and internal flow characteristics are simulated and tested under ground-based suction conditions. The results show that the Mach number at the outlet of the volute is in the range of 0.4 to 0.6, the total pressure recovery coefficient is kept above 0.97, and the value of total pressure distortion is smaller than 1.30%, demonstrating good aerodynamic performance of the inlet configuration. However, the outlet section forms a significant vortex flow under the effect of inlet/volute coupling flow. The average swirl intensity in the study range is 9.90°-11.35°, and the proportion of area with an absolute swirl angle greater than 15° reaches 20.4%-30.6%. It is found that the non-uniform inlet condition of the volute caused by the severe deflection of the inlet passage is the main reason for the formation of strong transverse secondary flow and separation vortex in the volute, thus leading to the strong swirling flow at the outlet.

参考文献

1 LIU L, CHEN F, LUO K, et al. Blowing-suction control in S-shaped inlet and its impact on fan-stage performance[J]. AIAA Journal201957(9): 3954-3968.
2 CHENG D S, TAN H J, SUN S, et al. Computational study of a high-performance submerged inlet with bleeding vortex[J]. Journal of Aircraft201249(3): 852-860.
3 曾丽芳, 胡建新, 潘定一, 等. 亚声速无人机S弯进气道的多点多目标优化设计[J]. 推进技术202142(3): 495-504.
  ZENG L F, HU J X, PAN D Y, et al. Multi-points and multi-objective optimization design of subsonic UAV S-shaped inlet[J]. Journal of Propulsion Technology202142(3): 495-504 (in Chinese).
4 BERENS T M, DELOT A L, CHEVALIER M, et al. Numerical simulations for high offset intake diffuser flows: AIAA-2014-0371[R]. Reston: AIAA, 2014.
5 CHIEREGHIN N, MACMANUS D G, SAVILL M, et al. Dynamic distortion simulations for curved aeronautical intakes [C]. Bristol: Applied Aerodynamics Conference 2014 (RAeS): Advanced Aero Concepts, Design and Operations, 2014.
6 REIN M, KOCH S, RUETTEN M. Experimental investigations on the influence of ingesting boundary layers into a diverterless S-duct intake: AIAA-2014-0373[R]. Reston: AIAA, 2014.
7 REIN M, KOCH S. Experimental study of boundary-layer ingestion into a diverterless S-duct intake[J]. AIAA Journal201553(11): 3487-3492.
8 徐诸霖, 高荣钊, 达兴亚. 基于五孔探针的大S弯进气道总压畸变测量与评估[J]. 实验流体力学201832(4): 78-86.
  XU Z L, GAO R Z, DA X Y. Assessment and measurement of total pressure distortion based on five-hole-probe for S-shaped inlet[J]. Journal of Experiments in Fluid Mechanics201832(4): 78-86 (in Chinese).
9 BURROWS T J, GONG Z C, VUKASINOVIC B, et al. Investigation of trapped vorticity concentrations effected by hybrid actuation in an offset diffuser: AIAA-2016-0055[R]. Reston: AIAA, 2016.
10 BURROWS T J, VUKASINOVIC B, GLEZER A. Flow dynamics effected by active flow control in an offset diffuser: AIAA-2018-4024[R]. Reston: AIAA, 2018.
11 BURROWS T J, VUKASINOVIC B, GLEZER A, et al. Experimental and numerical investigation of active flow control of a serpentine diffuser[J]. AIAA Journal202159(2): 607-620.
12 GIL-PRIETO D, MACMANUS D G, ZACHOS P K, et al. Convoluted intake distortion measurements using stereo particle image velocimetry[J]. AIAA Journal201755(6): 1878-1892.
13 RUETTEN M, KOCH S, KUCKENBURG S, et al. Investigation of the flow within partially submerged scoop type air intakes: AIAA-2013-2912[R]. Reston: AIAA, 2013.
14 TANGUY G, MACMANUS D G, ZACHOS P, et al. Passive flow control study in an S-duct using stereo particle image velocimetry[J]. AIAA Journal201755(6): 1862-1877.
15 ZACHOS P K, MACMANUS D G, PRIETO D G, et al. Flow distortion measurements in convoluted aeroengine intakes[J]. AIAA Journal201654(9): 2819-2832.
16 SUN S, TAN H J, WANG C X. Submerged inlet performance enhancement using a unique bump-shaped vortex generator[J]. Journal of Propulsion and Power201632(5): 1275-1280.
17 SUN S, TAN H J. Flow characteristics of an ultracompact serpentine inlet with an internal bump[J]. Journal of Aerospace Engineering201831(2): 1-11.
18 WANG K, HUANG H X, LIU L, et al. A new distortion evaluation method based on geometric association for arbitrary cross-sectional shape of inlet[J]. Aerospace Science and Technology2022128: 107728.
19 徐诸霖, 达兴亚, 范召林. 基于五孔探针的大S弯进气道旋流畸变评估[J]. 航空学报201738(12): 121342.
  XU Z L, DA X Y, FAN Z L. Assessment of swirl distortion of serpentine inlet based on five-hole probe[J]. Acta Aeronautica et Astronautica Sinica201738(12): 121342 (in Chinese).
20 HARIHARAN C, GOVARDHAN M. Aerodynamic performance and flow characteristics of an industrial centrifugal blower volute with varied cross-sectional shapes/area ratios[J]. International Journal of Turbo & Jet-Engines201936(1): 89-106.
21 HARIHARAN C, GOVARDHAN M. Improving performance of an industrial centrifugal blower with parallel wall volutes[J]. Applied Thermal Engineering2016109: 53-64.
22 ZHANG H Z, YANG C, YANG C M, et al. Inlet bent torsional pipe effect on the performance and stability of a centrifugal compressor with volute[J]. Aerospace Science and Technology201993: 105322.
23 YANG C, WANG Y J, TONG D, et al. Stall inception induced by the volute tongue at centrifugal compressor inlet[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2017231(5): 931-940.
24 VAGNOLI S, VERSTRAETE T. URANS analysis of the effect of realistic inlet distortions on the stall inception of a centrifugal compressor[J]. Computers & Fluids2015116: 192-204.
25 ZHANG M J, ZHENG X Q. Criteria for the matching of inlet and outlet distortions in centrifugal compressors[J]. Applied Thermal Engineering2018131: 933-946.
26 国防科学技术工业委员会. 航空涡轮喷气和涡轮风扇发动机进口总压畸变评定指南: [S]. 北京:国防科工军委出版发行部, 2004.
  Commission of Science, Technology and Industry for National Defense. Guidelines for evaluating total pressure distortion at the inlet of aviation turbojet and turbofan engines: [S]. Beijing: Publishing and Distribution Department of the National Defense Science, Industry and Military Commission, 2004.
27 宁乐. BLI进气道流动特性的地面模拟方法和初步实验研究[D]. 南京: 南京航空航天大学, 2016.
  NING L. Ground-based simulation method for the flow characteristics of BLI inlet and preliminary experiment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese).
28 HUANG H X, TAN H J, LIN Z K, et al. Flowfield of a helicopter submerged inlet with power output shaft[J]. Acta Mechanica Sinica202137(1): 156-168.
29 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
30 SONG K W, WANG L B. The effectiveness of secondary flow produced by vortex generators mounted on both surfaces of the fin to enhance heat transfer in a flat tube bank fin heat exchanger[J]. Journal of Heat Transfer2013135(4): 041902.
31 S-16 Turbine Engine Inlet Flow Distortion Committee. A methodology for assessing inlet swirl distortion[M].Warrendale: SAE International, 2022.
32 SANDWELL D T. Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data[J]. Geophysical Research Letters198714(2): 139-142.
文章导航

/