材料工程与机械制造

基于熵产理论的航空柱塞泵涡轮增压系统优化

  • 陈远玲 ,
  • 陈家文 ,
  • 潘越洋 ,
  • 闫明洋
展开
  • 广西大学 机械工程学院,南宁 530004
.E-mail: cylgxu@163.com

收稿日期: 2023-05-17

  修回日期: 2023-05-30

  录用日期: 2023-07-06

  网络出版日期: 2023-07-28

基金资助

国家自然科学基金(52265005)

Optimization of turbocharging system for aviation piston pump based on entropy production theory

  • Yuanling CHEN ,
  • Jiawen CHEN ,
  • Yueyang PAN ,
  • Mingyang YAN
Expand
  • School of Mechanical Engineering,Guangxi University,Nanning 530004,China
E-mail: cylgxu@163.com

Received date: 2023-05-17

  Revised date: 2023-05-30

  Accepted date: 2023-07-06

  Online published: 2023-07-28

Supported by

National Natural Science Foundation of China(52265005)

摘要

在航空柱塞泵的进油端集成涡轮增压系统,有利于提高航空液压系统的集成度,并解决柱塞泵在高转速下因吸油不足而产生的空化、脱靴等难题。针对涡轮增压系统中叶片和压水室流道的优化设计问题,基于熵产理论对增压系统中的能量损失及其空间分布进行了研究,构建了涡轮自增压轴向柱塞泵的流体域模型,探究压水室形式、断面形状、进口宽度、断面面积变化规律以及涡轮叶片形式与熵产率的关系,以熵产最小为目标优化涡轮增压系统的结构:涡轮采用扭曲叶片,压水室采用螺旋形、断面形状采用圆弧形、压水室进口宽度采用8 mm、断面面积变化规律为U型时,增压系统的总熵产下降约0.032 W/K,较优化前降低了13%,增压值上升约0.22 bar,较优化前增加7%。最后采用试制的样机搭建试验系统,测试了直叶片形式和扭曲叶片形式的涡轮增压值,试验结果与仿真结果基本一致。

本文引用格式

陈远玲 , 陈家文 , 潘越洋 , 闫明洋 . 基于熵产理论的航空柱塞泵涡轮增压系统优化[J]. 航空学报, 2024 , 45(4) : 429015 -429015 . DOI: 10.7527/S1000-6893.2023.29015

Abstract

The integration of turbocharging system at the inlet end of aviation piston pump is conducive to improving the integration of aviation hydraulic system, and solving the problems of cavitation and boot removal caused by insufficient oil absorption of the plunger pump at high speed. Aiming at the optimization design of blades and pressurized chamber flow channels in turbocharging system, the energy loss and spatial distribution in the pressurized system are studied based on the entropy production theory, and the fluid domain model of the turbo self-boosting axial piston pump is constructed to explore the changes of pressurized chamber form, section shape, inlet width, section area, and the relationship between turbine blade form and entropy yield. The structure of the turbocharging system is optimized to minimize the entropy production, ie. when the turbine adopts twisted blades, the pressurized water chamber adopts a spiral shape, the cross-section shape adopts a circular arc, the inlet width of the pressurized water chamber adopts 8mm, and the cross-section area change law is U-shaped, the total entropy production of the pressurized system decreases by about 0.032 W/K, which is 13% lower than before optimization, and the boost value increases by about 0. 22 bar, 7% more than before optimization. Finally, the prototype was used to build the test system, and the turbocharging values in the form of straight blades and twisted blades were tested, and the test results were basically consistent with the simulation results.

参考文献

1 GUO S R, CHEN J H, LU Y L, et al. Hydraulic piston pump in civil aircraft: current status, future directions and critical technologies[J]. Chinese Journal of Aeronautics202033(1): 20-34.
2 欧阳小平, 王天照, 方旭. 高速航空柱塞泵研究现状[J]. 液压与气动2018(2):1-8.
  OUYANG X P, WANG T Z, FANG X. Research status of the high speed aircraft piston pump[J]. Chinese Hydraulics & Pneumatics2018(2): 1-8 (in Chinese).
3 陈金华. 基于离心涡轮的液压柱塞泵自增压技术研究[J]. 机械工程师2012(7): 18-20.
  CHEN J H. Self-pressurized study of hydraulic piston pump based on the centrifugal turbine[J]. Mechanical Engineer2012(7): 18-20 (in Chinese).
4 张振寿. 高转速柱塞泵动态特性研究[D]. 杭州: 浙江大学, 2015: 51-58.
  ZHANG Z S. Research on the dynamic characteristics of the high speed piston pump[D]. Hangzhou: Zhejiang University, 2015: 51-58 (in Chinese).
5 DONG H K, HE Y, WANG Y, et al. Numerical investigation of effect of a centrifugal boost impeller on suction performance of an aircraft hydraulic pump[J]. Chinese Journal of Aeronautics202235(8): 236-248.
6 林京, 张博瑶, 张大义, 等. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报202243(8): 626565.
  LIN J, ZHANG B Y, ZHANG D Y, et al. Research status and prospect of fault diagnosis for gas turbine aeroengine[J]. Acta Aeronautica et Astronautica Sinica202243(8): 626565 (in Chinese).
7 杨宝锋, 李斌, 陈晖, 等. 液体火箭发动机推进剂泵诱导轮与离心轮的匹配[J]. 航空学报201940(5): 122609.
  YANG B F, LI B, CHEN H, et al. Matching effect between inducer and impeller in a liquid rocket engine propellant pump[J]. Acta Aeronautica et Astronautica Sinica201940(5): 122609 (in Chinese).
8 GONG R Z, WANG H J, CHEN L X, et al. Application of entropy production theory to hydro-turbine hydraulic analysis[J]. Science China (Technological Sciences)201356(7): 1636-1643.
9 LI X J, JIANG Z W, ZHU Z C, et al. Entropy generation analysis for the cavitating head-drop characteristic of a centrifugal pump[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science2018232(24): 4637-4646.
10 HOU H C, ZHANG Y X, ZHOU X, et al. Optimal hydraulic design of an ultra-low specific speed centrifugal pump based on the local entropy production theory[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy2019233(6):715-726.
11 綦蕾, 邹正平, 刘火星, 等. 高负荷涡轮端区非定常流动相互作用研究[J]. 航空学报200930(4): 584-596.
  QI L, ZOU Z P, LIU H X, et al. Unsteady flow interaction in endwall regions of high of high-loaded turbine stage[J]. Acta Aeronautica et Astronautica Sinica200930(4): 584-596 (in Chinese).
12 BEJAN A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes[J]. Choice Reviews Online199633(7): 33-39.
13 KOCK F, HERWIG H. Entropy production calculation for turbulent shear flows and their implementation in CFD codes[J]. International Journal of Heat and Fluid Flow200526(4): 672-680.
14 曾鸿基, 李正贵, 李德友, 等. 水泵水轮机流场脉动与熵产率的关系[J]. 排灌机械工程学报202240(8): 777-784.
  ZENG H J, LI Z G, LI D Y, et al. Relationship between flow pulsation and entropy production rate of pump turbine[J]. Journal of Drainage and Irrigation Machinery Engineering202240(8): 777-784 (in Chinese).
15 邹正平, 刘火星, 唐海龙, 等. 高超声速航空发动机强预冷技术研究[J]. 航空学报201536(8): 2544-2562.
  ZOU Z P, LIU H X, TANG H L, et al. Precooling technology study of hypersonic aeroengine[J]. Acta Aeronaytica et Astronautica Sinca201536(8): 2544-2562 (in Chinese).
16 石祥钟, 孟燕, 赵文鲁. 基于CFD的双涡轮液力变矩器的改进研究[J]. 液压与气动2016(5): 37-41.
  SHI X Z, MENG Y, ZHAO W L. Improvement of a dual-turbine hydrodynamic torque converter based on CFD[J]. Chinese Hydraulics & Pneumatics2016(5): 37-41 (in Chinese).
17 陈大为, 朱惠人, 李华太, 等. 尾迹对涡轮动叶全表面气膜冷却效率的影响[J]. 航空学报201940(3): 122651.
  CHEN D W, ZHU H R, LI H T, et al. Effect of unsteady wake on full coverage film cooling effectiveness for a turbine blade[J]. Acta Aeronautica et Astronautica Sinica201940(3): 122651 (in Chinese).
18 关醒凡. 现代泵理论与设计[M]. 北京: 中国宇航出版社, 2011: 241-277.
  GUAN X F. Modern pump theory and design[M]. Beijing: China Astronautic Publishing House. 2011: 241-277 (in Chinese).
19 赵希枫. 基于CFD技术改善离心泵内部空化性能的研究[D]. 兰州: 兰州理工大学, 2009: 19-27.
  ZHAO X F. Research on improvement cavitation performance of a centrifugal pump based on CFD technique[D]. Lanzhou: Lanzhou University of Technology, 2019: 19-27 (in Chinese).
20 雷世英, 孙见忠, 刘赫. 涡轮叶片累积损伤指数模型及服役可靠性评估[J]. 航空学报202243(3): 225064.
  LEI S Y, SUN J Z, LIU H. Cumulative damage index model and service reliability evaluation of turbine blade[J]. Acta Aeronautica et Astronautica Sinica202243(3): 225064 (in Chinese).
21 王福军. 水泵与泵站流动分析方法[M]. 北京: 中国水利水电出版社, 2020: 61-80.
  WANG F J. Analysis method of flow in pumps & pumping stations[M]. Beijing: China Water & Power Press, 2020: 61-80 (in Chinese).
文章导航

/