结冰与防除冰

基于多光谱和复阻抗的复合结冰探测技术

  • 刘进一 ,
  • 熊建军 ,
  • 桂康 ,
  • 葛俊锋 ,
  • 叶林
展开
  • 1.华中科技大学 人工智能与自动化学院,武汉 430074
    2.多谱信息智能处理技术全国重点实验室,武汉 430074
    3.中国空气动力研究与发展中心 结冰与防除冰重点实验室,绵阳 621000
.E-mail: guik@hust.edu.cn

收稿日期: 2023-07-11

  修回日期: 2023-07-16

  录用日期: 2023-07-17

  网络出版日期: 2023-07-21

基金资助

国家自然科学基金(62101196);中国博士后科学基金(2021M691138)

Integrated ice detection technology based on multispectral and complex impedance principles

  • Jinyi LIU ,
  • Jianjun XIONG ,
  • Kang GUI ,
  • Junfeng GE ,
  • Lin YE
Expand
  • 1.School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074,China
    2.National Key Laboratory of Multispectral Information Intelligent Processing Technology,Wuhan 430074,China
    3.Key Laboratory of Icing and Anti/De-icing,China Aerodynamics Research and Development Center,Mianyang 621000,China
E-mail: guik@hust.edu.cn

Received date: 2023-07-11

  Revised date: 2023-07-16

  Accepted date: 2023-07-17

  Online published: 2023-07-21

Supported by

National Natural Science Foundation of China(62101196);China Postdoctoral Science Foundation(2021M691138)

摘要

针对基于光强调制的光纤结冰传感器容易受污染物干扰的问题,提出了一种基于多光谱和复阻抗原理的复合式结冰探测技术,并通过实验对该方法进行了评估。根据待识别污染物的类型,多光谱和复阻抗传感器分别采集了具有区分性的4个近红外波段以及4个频率点数据。通过对每种不同类型表面状态提取21维多光谱特征和15维复阻抗特征,结合主成分分析及支撑向量机算法,建立了对明冰、积水表面状态的识别方法。实验结果表明,该方法可以排除防冻液、沙尘等5种常见的污染物干扰,在3 010条数据中实现了99.6%的状态识别准确率。对于明冰、积水的情况,进一步分析了液态水结冰过程的探测结果以及两种传感器的冰厚测量特性。实验结果表明940 nm波段的电压信号以及频率点为1.5 kHz的复阻抗等效电容值,能够表征结冰的相变过程并与冰厚具有明显相关性。

本文引用格式

刘进一 , 熊建军 , 桂康 , 葛俊锋 , 叶林 . 基于多光谱和复阻抗的复合结冰探测技术[J]. 航空学报, 2023 , 44(S2) : 729309 -729309 . DOI: 10.7527/S1000-6893.2023.29309

Abstract

Optical fiber ice sensors based on light intensity modulation are susceptible to contaminant interference. To solve this problem, an integrated ice detection technique is proposed based on multispectral and impedance principles, and the technique is evaluated by experiments. Depending on the types of contaminants to be identified, the data of the multi-spectral and impedance sensor in four distinguishable near-infrared bands and four frequency points are collected respectively. By extracting 21-dimensional multispectral features and 15-dimensional complex impedance features for each different type of surface state, a method for recognizing the surface state of glazed ice and water is established by using principal component analysis and support vector machine algorithms. The experimental results show that the method can exclude the interference of five common pollutants, such as antifreeze and sand, and achieve 99.6% state recognition accuracy in 3 010 data. For the case of glazed ice and water, the detection results of the liquid water icing process and the characteristics of the two sensors for measuring ice thickness are further analyzed. The experimental results also show that the voltage signal in the 940 nm band and the impedance equivalent capacitance value at the frequency point of 1.5 kHz can characterize the phase change process of icing and correlate significantly with ice thickness.

参考文献

1 WEI K X, YANG Y E, ZUO H Y, et al. A review on ice detection technology and ice elimination technology for wind turbine[J]. Wind Energy202023(3): 433-457.
2 ZHAO Q Y, LIU Z D, YU P, et al. Review of transmission line icing and anti-icing technologies[C]∥The proceedings of the 16th Annual Conference of China Electrotechnical Society. Singapore: Springer, 2022: 1224-1232.
3 ABOHASSAN A, EL-BASYOUNY K, KWON T J. Exploring the associations between winter maintenance operations, weather variables, surface condition, and road safety: a path analysis approach[J]. Accident Analysis & Prevention2021163: 106448.
4 ZHANG Y, WANG J B, JIANG C, et al. Investigation of ice and snow accumulations on the bogie areas of high-speed trains using ice wind tunnel experiments[J]. Cold Regions Science and Technology2022199: 103560.
5 CAO Y H, TAN W Y, WU Z L. Aircraft icing: an ongoing threat to aviation safety[J]. Aerospace Science and Technology201875: 353-385.
6 易贤, 王斌, 李伟斌, 等. 飞机结冰冰形测量方法研究进展[J]. 航空学报201738(2): 520711.
  YI X, WANG B, LI W B, et al. Research progress on ice shape measurement approaches for aircraft icing[J]. Acta Aeronautica et Astronautica Sinica201738(2): 520711 (in Chinese).
7 何磊, 钱炜祺, 董康生, 等. 基于卷积神经网络的结冰翼型气动特性建模[J]. 航空学报202344(5): 59-72.
  HE L, QIAN W Q, DONG K S, et al. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks[J]. Acta Aeronautica et Astronautica Sinica202344(5): 59-72 (in Chinese).
8 马乙楗, 柴得林, 王强, 等. 翼面结冰过程中的冰晶运动相变与黏附特性[J]. 航空学报202344(1): 41-52.
  MA Y J, CHAI D L, WANG Q, et al. Phase change and adhesion characteristics of ice crystal movements in wing icing[J]. Acta Aeronautica et Astronautica Sinica202344(1): 41-52 (in Chinese).
9 郭琪磊, 桑为民, 牛俊杰, 等. 复杂气象条件下考虑结冰风险的无人机飞行策略[J]. 航空学报202344(1): 120-136.
  GUO Q L, SANG W M, NIU J J, et al. UAV flight strategy considering icing risk under complex meteorological conditions[J]. Acta Aeronautica et Astronautica Sinica202344(1): 120-136 (in Chinese).
10 刘晓林, 朱彦曈, 王泽林澜, 等. 飞行器仿生防冰涂层技术现状与趋势[J]. 航空学报202243(10): 527331.
  LIU X L, ZHU Y T, WANG Z, et al. Research progress and development trend of bio-inspired anti-icing coatings for aircraft[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527331 (in Chinese).
11 MAIO L, MOLL J, MEMMOLO V, et al. Detection of ice accretions on composite panels using FMCW radars at 60GHz[C]∥2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace). Piscataway: IEEE Press, 2021: 636-639.
12 BYSTROV A, HOARE E, TRAN T Y, et al. Automotive system for remote surface classification[J]. Sensors201717(4): 745.
13 MUSCI M A, MAZZARA L, LINGUA A M. Ice detection on aircraft surface using machine learning approaches based on hyperspectral and multispectral images[J]. Drones20204(3): 45.
14 JONSSON P, CASSELGREN J, TH?RNBERG B. Road surface status classification using spectral analysis of NIR camera images[J]. IEEE Sensors Journal201515(3): 1641-1656.
15 ZHANG X W, YUE Y Z, HAN L, et al. River ice monitoring and change detection with multi-spectral and SAR images: application over Yellow River[J]. Multimedia Tools and Applications202180(19): 28989-29004.
16 KOZAK R, WILTSHIRE B D, KHANDOKER M A R, et al. Modified microwave sensor with a patterned ground heater for detection and prevention of ice accumulation[J]. ACS Applied Materials & Interfaces202012(49): 55483-55492.
17 GUI K, LIU J Y, GE J F, et al. Atmospheric icing process measurement utilizing impedance spectroscopy and thin film structure[J]. Measurement2022202: 111851.
18 NEUMAYER M, BRETTERKLIEBER T, FLATSCHER M. Signal processing for capacitive ice sensing: electrode topology and algorithm design[J]. IEEE Transactions on Instrumentation and Measurement201968(5): 1458-1466.
19 GONZALEZ M, FR?VEL M. Fiber Bragg Grating Sensors ice detection: Methodologies and performance[J]. Sensors and Actuators A: Physical2022346: 113778.
20 MAIO L, MOLL J, MEMMOLO V, et al. Ultrasonic inspection for ice accretion assessment: effects on direct wave propagation in composite media[J]. Mechanical Systems and Signal Processing2022173: 109025.
21 WANG Y, WANG Y, LI W, et al. Study on freezing characteristics of the surface water film over glaze ice by using an ultrasonic pulse-echo technique[J]. Ultrasonics2022126: 106804.
22 白天, 朱春玲, 李清英, 等. 压电双晶片悬臂梁结构用于结冰探测的研究[J]. 航空学报201334(5): 1073-1082.
  BAI T, ZHU C L, LI Q Y, et al. Study of bimorph piezoelectric cantilever structure used on icing detection[J]. Acta Aeronautica et Astronautica Sinica201334(5): 1073-1082 (in Chinese).
23 AMOIROPOULOS K, KIOSELAKI G, KOURKOU? MELIS N, et al. Shaping beam profiles using plastic optical fiber tapers with application to ice sensors[J]. Sensors202020(9): 2503.
24 ZOU J H, YE L, GE J F. Ice type detection using an oblique end-face fibre-optic technique[J]. Measurement Science and Technology201324(3): 035201.
文章导航

/