结冰与防除冰

欧拉壁膜模型在结冰模拟中的扩展

  • 熊华杰 ,
  • 安怡竞 ,
  • 吴主龙 ,
  • 周志宏
展开
  • 四川大学 力学科学与工程系,成都 610065
.E-mail: zhouzhihong@scu.edu.cn

收稿日期: 2023-07-10

  修回日期: 2023-07-16

  录用日期: 2023-07-17

  网络出版日期: 2023-07-21

基金资助

国家自然科学基金(12072213);国家科技重大专项(J2019-III-0010-0054);国家数值风洞工程(NNW2019-JT01-023)

Extension of Eulerian wall film model in icing simulation

  • Huajie XIONG ,
  • Yijing AN ,
  • Zhulong WU ,
  • Zhihong ZHOU
Expand
  • Department of Mechanical Science and Engineering,Sichuan University,Chengdu 610065,China

Received date: 2023-07-10

  Revised date: 2023-07-16

  Accepted date: 2023-07-17

  Online published: 2023-07-21

Supported by

National Natural Science Foundation of China(12072213);National Science and Technology Major Project(J2019-III-0010-0054);National Numerical Windtunnel Project(NNW2019-JT01-023)

摘要

在结冰热力学模型中,传热相变的描述通常较为完备,而水膜流动的描述通常会被简化。针对这一问题,采用求解——校正法扩展了欧拉壁膜模型在结冰模拟上的能力,并研究了扩展模型在数值格式和结冰预测方面的特性。计算表明,随着时间步的推进,结冰率会逐渐稳定。数值格式方面,二阶隐式格式和二阶迎风格式表现出更好的计算稳定性,且时间步长和时空差分格式对计算精度的影响基本可以忽略。冰形预测方面,与LEWICE软件相比,扩展模型计算的NACA0015翼型冰形与实验冰形更加贴合;与简化了水膜流动的结冰模型相比,较高速来流情况下,扩展模型在冰角的预测方面更接近实验结果。此外,扩展模型在30P30N多段翼和DPW客机构型的结冰模拟中,也表现出良好的适应性。

本文引用格式

熊华杰 , 安怡竞 , 吴主龙 , 周志宏 . 欧拉壁膜模型在结冰模拟中的扩展[J]. 航空学报, 2023 , 44(S2) : 729287 -729287 . DOI: 10.7527/S1000-6893.2023.29287

Abstract

In icing thermodynamic models, while the description of heat transfer and phase change is complete, the description of water film flow is usually simplified. To solve this problem, the calculation-correction method is used to expand the ability of Eulerian Wall Film (EWF) model in icing simulation, and the characteristics of the extended model in numerical schemes and icing prediction are studied. Calculations show that the icing rate gradually stabilizes over time. During the calculation, the second-order implicit method and the second-order upwind scheme show better stability, and the time-step and temporal/spatial differencing scheme have little effect on the calculation accuracy. In terms of icing prediction, the extended model has more advantages for the icing prediction of NACA0015 airfoil, compared with LEWICE software; the extended model is closer to the experimental results in the prediction of ice horn at relatively high speeds, compared with the icing model that simplifies the flow of the water film. In addition, the extended model also shows good adaptability in the icing simulation of the 30P30N airfoil and DPW aircraft.

参考文献

1 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报201738(2): 520734.
  GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica201738(2): 520734 (in Chinese).
2 RUFF G, BERKOWITZ B. Users manual for the NASA lewis ice accretion prediction code (LEWICE): NASA-CR-185129[R]. Washington, D.C.: NASA, 1990.
3 BOURGAULT Y, BEAUGENDRE H, HABASHI W G. Development of a shallow-water icing model in FENSAP-ICE[J]. Journal of Aircraft200037(4): 640-646.
4 HEDDE T, GUFFOND D. ONERA three-dimensional icing model[J]. AIAA Journal199533(6): 1038-1045.
5 ZHANG H, WEN C, SU J W. A numerical study of droplet impingement for in-flight ice accretion prediction: V01AT12A002[R]. Washington, D.C.: ASME, 2016.
6 XU D D, WANG L W, XING Z W. Numerical simulation of the collection efficiency on aircraft ground icing[C]∥ Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. Piscataway: IEEE Press, 2011: 2408-2411.
7 MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences195320(1): 29-42.
8 WRIGHT W B, GENT R W, GUFFOND D. DRA/NASA/ONERA collaboration on icing research[R]. Washington, D.C.: NASA, 1997.
9 易贤, 桂业伟, 朱国林. 飞机三维结冰模型及其数值求解方法[J]. 航空学报201031(11): 2152-2158.
  YI X, GUI Y W, ZHU G L. Numerical method of a three-dimensional ice accretion model of aircraft[J]. Acta Aeronautica et Astronautica Sinica201031(11): 2152-2158 (in Chinese).
10 曹广州, 吉洪湖, 斯仁. 迎风面三维积冰过程中水膜流动的计算方法[J]. 航空动力学报201530(3): 677-685.
  CAO G Z, JI H H, SI R. Computational methodology of water film flow in three-dimensional ice accretion on upwind surface[J]. Journal of Aerospace Power201530(3): 677-685 (in Chinese).
11 BUCKNELL A, MCGILVRAY M, GILLESPIE D R H, et al. A thermodynamic model for ice crystal accretion in aircraft engines: EMM-C[J]. International Journal of Heat and Mass Transfer2021174: 121270.
12 MYERS T G. Extension to the Messinger model for aircraft icing[J]. AIAA Journal200139: 211-218.
13 MYERS T G, CHARPIN J P F, CHAPMAN S J. The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface[J]. Physics of Fluids200214(8): 2788-2803.
14 BEAUGENDRE H, MORENCY F, HABASHI W G. Development of a second generation in-flight icing simulation code[J]. Journal of Fluids Engineering2006128(2): 378-387.
15 GORI G, ZOCCA M, GARABELLI M, et al. PoliMIce: A simulation framework for three-dimensional ice accretion[J]. Applied Mathematics and Computation2015267: 96-107.
16 GORI G, PARMA G, ZOCCA M, et al. Local solution to the unsteady stefan problem for in-flight ice accretion modeling[J]. Journal of Aircraft201855(1): 251-262.
17 雷梦龙, 常士楠, 杨波. 基于Myers模型的三维结冰数值仿真[J]. 航空学报201839(9): 121962.
  LEI M L, CHANG S N, YANG B. Three-dimensional numerical simulation of icing using Myers model[J]. Acta Aeronautica et Astronautica Sinica201839(9): 121962 (in Chinese).
18 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报202142(S1): 107-122.
  LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica202142(S1): 107-122 (in Chinese).
19 DAI H, ZHU C L, ZHAO H Y, et al. A new ice accretion model for aircraft icing based on phase-field method[J]. Applied Sciences202111(12): 5693.
20 DAI H, ZHU C X, ZHAO N, et al. An unsteady model for aircraft icing based on tightly-coupled method and phase-field method[J]. Aerospace20218(12): 373.
21 SHEN X B, QI Z C, ZHAO W Z, et al. Numerical simulation of aircraft icing with an unsteady thermodynamic model considering the development of water film and ice layer[J]. International Journal of Aerospace Engineering20222022: 1-18.
22 LI X, BAI J Q, HUA J, et al. A spongy icing model for aircraft icing[J]. Chinese Journal of Aeronautics201427(1): 40-51.
23 裘夔纲, 韩凤华. 飞机防冰系统[M]. 北京: 国防工业出版社, 2004: 166-167.
  QIU K G, HAN F H. The system of aircraft anti-icing[M]. Beijing: National Defense Industry Press, 2004: 166-167 (in Chinese).
24 ANSYS. ANSYS Fluent theory guide[M]. Canonsburg: ANSYS Inc, 2019: 669-682.
25 STANTON D W, RUTLAND C J. Multi-dimensional modeling of thin liquid films and spray-wall interactions resulting from impinging sprays[J]. International Journal of Heat and Mass Transfer199841(20): 3037-3054.
26 ANSYS, ANSYS FENSAP-ICE user manual[M]. Canonsburg: ANSYS Inc, 2019: 155-157.
27 KAKIMPA B, MORVAN H P, HIBBERD S. Solution strategies for thin film rimming flow modelling: V05CT15A026[R]. Montreal: ASME, 2015.
28 WRIGHT W. Validation results for lewice 3.0: NASA/CR-1999-208690[R]. Washington, D.C.: NASA, 2013.
29 李延, 郭涛, 常红亮. 基于欧拉壁面液膜模型的三维热气防冰腔数值仿真[J]. 北京航空航天大学学报201844(5): 959-966.
  LI Y, GUO T, CHANG H L. Numerical simulation of 3D hot-air anti-icing chamber based on Eulerian wall film model[J]. Journal of Beijing University of Aeronautics and Astronautics201844(5): 959-966 (in Chinese).
文章导航

/