异型喷口的多维偏转S弯喷管设计方法
收稿日期: 2023-04-25
修回日期: 2023-06-08
录用日期: 2023-07-13
网络出版日期: 2023-07-21
基金资助
国家自然科学基金(52076180);陕西省杰出青年科学基金(2021JC-10);国家科技重大专项(J2019-Ⅱ-0015-0036);航空发动机及燃气轮机基础科学中心项目(P2022-B-I-002-001,P2022-B-Ⅱ-010-001);中央高校基本科研业务费专项资金(501XTCX2023146001)
Design method for multi-dimensional deflected serpentine nozzle with abnormal exit
Received date: 2023-04-25
Revised date: 2023-06-08
Accepted date: 2023-07-13
Online published: 2023-07-21
Supported by
National Natural Science Foundation of China(52076180);Funds for Distinguished Young Scholars of Shaanxi Province(2021JC-10);National Science and Technology Major Project (J2019-Ⅱ-0015-0036);Science Center for Gas Turbine Project (P2022-B-I-002-001, P2022-B-Ⅱ-010-001);Fundamental Research Funds for the Central Universities(501XTCX2023146001)
高气动性能、复杂构型的多维偏转S弯喷管气动型面设计是翼身融合布局隐身飞机的关键技术之一。通过改进Lee曲线方法和多参数耦合法,提出了一种异型喷口的多维偏转S弯喷管设计方法,实现了带矢量角的多维偏转S形中心线设计和圆形进口至异型喷口的截面过渡,可用于常规及空间受限布局下的多维偏转、带矢量角、非对称异型喷口、单/双发布局等多种类型的S弯喷管气动型面设计。基于数值模拟方法和小型涡喷发动机整机实验验证了提出的设计方法,结果表明:基于空间受限布局设计的超紧凑S弯喷管,在临界工况下,流量系数达到0.982,推力系数达到0.989,在超临界工况下,流量系数不小于0.984,推力系数不小于0.992;基于空间受限布局设计的多维偏转S弯喷管,在临界工况下,流量系数达到0.980,推力系数达到0.986,在超临界工况下,流量系数不小于0.981,推力系数不小于0.990;基于双发布局设计的双发S弯喷管,安装发动机后总推力相比原装喷管降低不大于4.58%,具有较好的气动性能。
孟钰博 , 史经纬 , 周莉 , 张诣 , 王占学 . 异型喷口的多维偏转S弯喷管设计方法[J]. 航空学报, 2024 , 45(8) : 128930 -128930 . DOI: 10.7527/S1000-6893.2023.28930
The aerodynamic profile design of multi-dimensional deflected serpentine nozzles with high aerodynamic performance and complex configurations is one of the crucial technologies for stealth aircraft with integrated wing-body layouts. By improving the Lee curve method and multiparametric coupled method, we propose a design method for multi-dimensional deflected serpentine nozzles with an abnormal exit, and realize the multi-dimensional deflected serpentine centerline design with vector angles and the cross-sectional transition from the circular inlet to the abnormal exit. This method can be used for the aerodynamic profile design of multiple serpentine nozzles with conventional and space-confined layouts, such as multi-dimensional deflected serpentine nozzles, serpentine nozzles with vector angles, serpentine nozzles with unsymmetrical abnormal exits, and serpentine nozzles for single and twin aeroengine layouts. The proposed design method is verified by the numerical simulation method and the small turbojet engine test. The results show that the discharge and thrust coefficients of the ultra-compact serpentine nozzle designed with the space-confined layout reach 0.982 and 0.989, respectively, under the critical condition, and are no smaller than 0.984 and 0.992, respectively, under the overcritical condition. Those of the multi-dimensional deflected serpentine nozzle designed with the space-confined layout reach 0.980 and 0.986, respectively, under the critical condition and are no smaller than 0.981 and 0.990, respectively, under the overcritical condition. The total thrust of engine after installing the juxtaposition serpentine nozzles designed with the twin engine layout is no more than 4.58% lower than that with the original nozzle. The designed serpentine nozzles have better aerodynamic performance.
1 | ANDERSSON K. Modeling the impact of surface emissivity on the military utility of attack aircraft[J]. Aerospace Science and Technology, 2017, 65: 133-140. |
2 | MARCUS C, ANDERSSON K, ?KERLIND C. Balancing the radar and long wavelength infrared signature properties in concept analysis of combat aircraft?A proof of concept[J]. Aerospace Science and Technology, 2017, 71: 733-741. |
3 | JOHANSSON M. Propulsion integration in an UAV:AIAA-2006-2834 [R]. Reston: AIAA, 2006. |
4 | 高翔. 飞行器/排气系统红外辐射及电磁散射特性数值研究[D]. 西安: 西北工业大学, 2016. |
GAO X. Investigation on the infrared radiation and radar scattering characteristics of aircraft and engine[D].Xi’an: Northwestern Polytechnical University, 2016 (in Chinese). | |
5 | 邓洪伟, 尚守堂, 金海, 等. 航空发动机隐身技术分析与论述[J]. 航空科学技术, 2017, 28(10): 1-7. |
DENG H W, SHANG S T, JIN H, et al. Analysis and discussion on stealth technology of aero engine[J]. Aeronautical Science & Technology, 2017, 28(10): 1-7 (in Chinese). | |
6 | MAHULIKAR S P, SONAWANE H R, ARVIND RAO G. Infrared signature studies of aerospace vehicles[J]. Progress in Aerospace Sciences, 2007, 43(7-8): 218-245. |
7 | STACK C M, GAITONDE D V. Shear layer dynamics in a supersonic rectangular multistream nozzle with an aft-deck[J]. AIAA Journal, 2018, 56(11): 4348-4360. |
8 | MATS J D, HENRIK E, URBAN F, et al. IR signature design effort on the MULDICON configuration: AIAA-2018-3167[R]. Reston: AIAA, 2018. |
9 | 孙啸林. 低可探测S弯喷管设计及性能评估方法研究[D]. 西安: 西北工业大学, 2018. |
SUN X L. Investigation on design method and performance estimation of low observable S-shaped nozzle[D].Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). | |
10 | 王俊华. 航空发动机尾喷管的气动/隐身特性研究[D]. 沈阳: 沈阳航空航天大学, 2019. |
WANG J H. Investigation on aerodynamic and stealth characteristics of aeroengine nozzle[D].Shenyang: Shenyang Aerospace University, 2019 (in Chinese). | |
11 | LEE C, BOEDICKER C. Subsonic diffuser design and performance for advanced fighter aircraft: AIAA-1985-3073[R] . Reston: AIAA, 1985. |
12 | ZHANG X Y, SHAN Y, ZHANG J Z, et al. Optimization for aerodynamic performance of double serpentine nozzles with spanwise offsets using Taguchi-based CFD analysis[J]. Chinese Journal of Aeronautics, 2023, 36(5): 1-17. |
13 | 卫永斌, 艾俊强. 并列双发三维非对称多S弯喷管参数化设计方法[J]. 航空动力学报, 2015, 30(2): 271-280. |
WEI Y B, AI J Q. Parameter design method of double juxtaposition 3-D asymmetric several-S-shaped nozzles[J]. Journal of Aerospace Power, 2015, 30(2): 271-280 (in Chinese). | |
14 | OKONKWO P, SMITH H. Review of evolving trends in blended wing body aircraft design[J]. Progress in Aerospace Sciences, 2016, 82: 1-23. |
15 | 李岳锋, 杨青真, 孙志强. 超椭圆S形进气道的设计及气动性能研究[J]. 计算机仿真, 2011, 28(3): 82-85, 96. |
LI Y F, YANG Q Z, SUN Z Q. Design of super-elliptic S-shaped inlet and analysis of aerodynamic performance[J]. Computer Simulation, 2011, 28(3): 82-85, 96 (in Chinese). | |
16 | 周慧晨, 谭慧俊, 李湘萍. 复杂变截面进气道的一种设计方法[J]. 航空动力学报, 2009, 24(6): 1357-1363. |
ZHOU H C, TAN H J, LI X P. Unique design method of subsonic inlet with complex cross-sectional shape[J]. Journal of Aerospace Power, 2009, 24(6): 1357-1363 (in Chinese). | |
17 | 袁渊, 肖正扬, 杨继新. 超椭圆曲线特性及其在曲面拟合中的应用[J]. 大连轻工业学院学报, 2004, 23(4): 287-290. |
YUAN Y, XIAO Z Y, YANG J X. Characteristics of super-ellipse and survey for its applications in surface fitting[J]. Journal of Dalian Institute of Light Industry, 2004, 23(4): 287-290 (in Chinese). | |
18 | SHAN Y, ZHOU X M, TAN X M, et al. Parametric design method and performance analysis of double S-shaped nozzles[J]. International Journal of Aerospace Engineering, 2019, 2019: 4694837. |
19 | 《数学手册》编写组. 数学手册[M]. 北京: 高等教育出版社, 1979. |
“Mathematics Manual” Writing Group. Mathematics manual[M]. Beijing: Higher Education Press, 1979 (in Chinese). | |
20 | HE Y B, YANG Q Z, GAO X. Comprehensive optimization design of aerodynamic and electromagnetic scattering characteristics of serpentine nozzle[J]. Chinese Journal of Aeronautics, 2021, 34(3): 118-128. |
21 | SUN P, ZHOU L, WANG Z X, et al. Influences of geometric parameters on serpentine nozzles for turbofan[J]. Aerospace Science and Technology, 2023, 136: 108224. |
22 | 程稳, 周莉, 王占学, 等. 几何参数对S弯喷管红外辐射特性的影响[J]. 推进技术, 2018, 39(9): 1974-1985. |
CHENG W, ZHOU L, WANG Z X, et al. Effects of geometric parameters on infrared signature of serpentine nozzle[J]. Journal of Propulsion Technology, 2018, 39(9): 1974-1985 (in Chinese). | |
23 | CROWE D S, MARTIN C L. Hot streak characterization of high-performance double-serpentine exhaust nozzles at design conditions[J]. Journal of Propulsion and Power, 2019, 35(3): 501-511. |
24 | 关履泰, 许伟志, 朱庆勇. 一种散乱点双三次多项式自然样条插值[J]. 中山大学学报(自然科学版), 2008, 47(5): 1-4. |
GUAN L T, XU W Z, ZHU Q Y. Interpolation for space scattered data by bicubic polynomial natural splines[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47(5): 1-4 (in Chinese). | |
25 | SUN X L, MA S, WANG Z X, et al. Compressible flow characteristics in bent duct with constant flow section[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(7): 745-757. |
/
〈 |
|
〉 |