可重复使用运载火箭技术专栏

可重复使用运载火箭再入段星箭协同可靠通信技术

  • 李小平 ,
  • 杨敏 ,
  • 姚博 ,
  • 刘彦明 ,
  • 石磊 ,
  • 刘浩岩 ,
  • 李乘光
展开
  • 西安电子科技大学 空间科学与技术学院,西安 710126
.E-mail: merovingia1911@126.com

收稿日期: 2023-04-21

  修回日期: 2023-06-25

  录用日期: 2023-07-03

  网络出版日期: 2023-07-21

基金资助

国家自然科学基金(62071355)

Reliable communication technologies of reusable launch vehicles in cooperation with satellite during re-entry

  • Xiaoping LI ,
  • Min YANG ,
  • Bo YAO ,
  • Yanming LIU ,
  • Lei SHI ,
  • Haoyan LIU ,
  • Chengguang LI
Expand
  • School of Aerospace Science and Technology,Xidian University,Xi’an 710126,China

Received date: 2023-04-21

  Revised date: 2023-06-25

  Accepted date: 2023-07-03

  Online published: 2023-07-21

Supported by

National Natural Science Foundation of China(62071355)

摘要

可重复使用运载火箭是未来低成本火箭应用技术的必然发展趋势。其是一种典型的跨域可重复飞行器,在火箭以极高的速度再入大气过程中,包覆在箭体表面的等离子体鞘套会引起通信中断问题。这一问题困扰了航空航天领域几十年,至今尚未完全解决。可靠通信链路的建立和保持是实现可回收火箭再入过程中全时可测、全程可控的重要基础。近年来快速发展的低轨卫星系统为再入段测控链路设计提供了新思路,箭体背风面等离子体鞘套电子密度较低,有利于电磁波穿透鞘套与卫星建立链路,以解决再入段的“黑障”通信难题。然而,再入段星箭综合通信信道状况复杂,多种影响因素深度耦合。分别从综合信道模型与适应性通信方法这2个角度进行了阐述。首先,分析再入段星箭链路综合信道中影响通信信号的主要因素,建立不同尺度下的信道模型。然后,根据信道特点,从信道感知、编码、检测、调制体制等角度设计适应性通信方法。最后,在地面实验中复现了再入段通信场景并对所提出的通信方案进行了验证。实验结果表明,所提出的通信方案可大幅提高通信的可靠性,为运载火箭可重复使用提供了通信保障。

本文引用格式

李小平 , 杨敏 , 姚博 , 刘彦明 , 石磊 , 刘浩岩 , 李乘光 . 可重复使用运载火箭再入段星箭协同可靠通信技术[J]. 航空学报, 2023 , 44(23) : 628906 -628906 . DOI: 10.7527/S1000-6893.2023.28906

Abstract

Reusable rockets have become an inevitable development trend of low-cost rocket application technology in the future. They are typical cross-domain reusable vehicles. When the rocket re-enters the atmosphere at a very high speed, the plasma sheath covering the surface of the rocket will cause the problem of communication interruption. This problem has plagued the aerospace field for decades and has not yet been fully resolved. The establishment and maintenance of a reliable communication link is an important basis for realizing full-time measurability and full-process controllability during the re-entry process of a reusable rocket. The development of the low-orbit satellite system in recent years provides a new idea for the design of the re-entry measurement and control link. The electron density of the plasma sheath on the leeward side of the rocket is low, so that the electromagnetic wave can penetrate the sheath to establish a link between the rocket and satellites, thus solving the black-out problem. However, in the re-entry phase, the composite satellite-rocket communication channel is complex, and various influencing factors are deeply coupled. The composite channel model and adaptive communication methods are elaborated separately. Firstly, the main influencing factors on the communication signal in the composite channel of the re-entry satellite-rocket link are analyzed, and the channel models at different scales are established. Then, according to the characteristics of the channel, an adaptive communication method is designed from the perspectives of channel sensing, coding, detection and modulation system. Finally, the re-entry communication scenario is reproduced in the ground experiment to verify the proposed communication methods. The experimental results show that the proposed communication methods can greatly improve the reliability of communication and provide guarantee for communication of rocket reuse.

参考文献

1 GARG P, DODIYAL A K. Reducing RF blackout during re-entry of the reusable launch vehicle[C]∥2009 IEEE Aerospace Conference. Piscataway: IEEE Press, 2009: 1-15.
2 JONES W L, Jr, CROSS A E. Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second: NASA-TN-D-6617[R]. Washington, D.C.: NASA, 1972.
3 BOYER D W, TOURYAN K J. Experimental and numerical studies of flush electrostatic probes in hypersonic ionized flows: I. Experiment[J]. AIAA Journal197210(12): 1667-1674.
4 SCOTT M B, HOFFMAN R. The Mercury programming system[C]∥Proceedings of Eastern Joint Computer Conference: Computers - Key to Total Systems Control. New York: ACM, 1961: 47-53.
5 SCHROEDER L C, RUSSO F P. Flight investigation and analysis of alleviation of communications blackout by water injection during Gemini 3 reentry: NASA TM X-1521[R]. Washington, D.C.: NASA, 1968.
6 LEWIS J H, Jr, SCALLION W I. Flight parameters and vehicle performance for project fire flight I, launched April 14, 1964: NASA-TN-D-2996[R]. Washington, D.C.: NASA, 1965.
7 LEWIS J H, Jr, SCALLION W I. Flight parameters and vehicle performance for project fire flight II, launched May 22, 1965: NASA-TN-D-3569[R]. Washington, D.C.: NASA, 1966.
8 欧阳文冲. 高超声速等离子体流场及电磁波传播特性数值模拟[D]. 西安: 西安电子科技大学, 2020: 33-50.
  OUYANG W C. Numerical simulation of hypersonic plasma flow field and electromagnetic wave propagation characteristics[D]. Xi’an: Xidian University, 2020: 33-50 (in Chinese).
9 YANG M, DONG P, XIE K, et al. Broadband microwave reflectometry plasma diagnostic based on invariant point of reflection data[J]. Physics of Plasmas202128(10): 102105.
10 WANG J J, LIU Y M, LIU X T, et al. Robust model-predictive control for inductively coupled plasma generation with a semiphysical simulation[J]. IEEE Transactions on Industrial Electronics202168(4): 3380-3389.
11 YAO B, LI X P, SHI L, et al. A multiscale model of reentry plasma sheath and its nonstationary effects on electromagnetic wave propagation[J]. IEEE Transactions on Plasma Science201745(8): 2227-2234.
12 XIE K, YANG M, BAI B W, et al. Re-entry communication through a plasma sheath using standing wave detection and adaptive data rate control[J]. Journal of Applied Physics2016119(2): 023301.
13 张浩杰. 等离子鞘套传输环境下自适应编码技术研究[D]. 西安: 西安电子科技大学, 2020: 85-100.
  ZHANG H J. Research on adaptive coding technology in plasma sheath transmission environment[D]. Xi’an: Xidian University, 2020: 85-100 (in Chinese).
14 李于衡, 罗斌, 郭文鸽, 等. 中继卫星Ka频段支持飞船再入返回通信可行性分析[J]. 载人航天201521(6): 582-588.
  LI Y H, LUO B, GUO W G, et al. Feasibility analysis of using Ka-band of TRDS to support wireless communication for spacecraft reentry[J]. Manned Spaceflight201521(6): 582-588 (in Chinese).
15 ARAPOGLOU P D, LIOLIS K, BERTINELLI M, et al. MIMO over satellite: A review[J]. IEEE Communications Surveys & Tutorials201113(1): 27-51.
16 魏麟. 航空移动卫星业务通信信道模型及性能研究[J]. 航空科学技术200718(5): 30-34.
  WEI L. A simulation study of aeronautical mobile satellite services communication channels and performance[J]. Aeronautical Science and Technology200718(5): 30-34 (in Chinese).
17 LYU X T, JIANG C X, FENG W, et al. A shock tube experimental system for communication performance evaluation under the time-varying plasma flow channel[J]. IEEE Transactions on Plasma Science201745(9): 2450-2459.
18 LIN T C, SPROUL L K. Influence of reentry turbulent plasma fluctuation on EM wave propagation[J]. Computers & Fluids200635(7): 703-711.
19 YANG M, LI X P, WANG D, et al. Propagation of phase modulation signals in time-varying plasma[J]. AIP Advances20166(5): 055110.
20 YAO B, LI X P, SHI L, et al. A layered fluctuation model of electron density in plasma sheath and instability effect on electromagnetic wave at Ka band[J]. Aerospace Science and Technology201878: 480-487.
21 YAO B, LI X P, SHI L, et al. A geometric-stochastic integrated channel model for hypersonic vehicle: A physical perspective[J]. IEEE Transactions on Vehicular Technology201968(5): 4328-4341.
22 YAO B, SHI L, LI X P, et al. Experimental study on correlation between amplitude and phase of electromagnetic wave affected by time-varying plasma by amplitude-modulated radio frequency plasma generator[J]. Physics of Plasmas202128(4): 042107.
23 ZHANG Q Q, KASSAM S A. Finite-state Markov model for Rayleigh fading channels[J]. IEEE Transactions on Communications199947(11): 1688-1692.
24 TAN C C, BEAULIEU N C. First-order Markov modeling for the Rayleigh fading channel[C]∥IEEE GLOBECOM 1998. Piscataway: IEEE Press, 1998: 3669-3674.
25 TAN C C, BEAULIEU N C. On first-order Markov modeling for the Rayleigh fading channel[J]. IEEE Transactions on Communications200048(12): 2032-2040.
26 PIMENTEL C, FALK T H, LISBOA L. Finite-state Markov modeling of correlated Rician-fading channels[J]. IEEE Transactions on Vehicular Technology200453(5): 1491-1501.
27 SADEGHI P, KENNEDY R A, RAPAJIC P B, et al. Finite-state Markov modeling of fading channels: A survey of principles and applications[J]. IEEE Signal Processing Magazine200825(5): 57-80.
28 王柏懿, 徐燕侯, 嵇震宇. 电磁波在非均匀有损耗再入等离子鞘层中的传播[J]. 宇航学报19856(1): 35-46.
  WANG B Y, XU Y H, JI Z Y. Propagation of electromagnetic waves in inhomogenous and lossy reentry plasma sheath layer[J]. Journal of Astronautics19856(1): 35-46 (in Chinese).
29 HE G L, ZHAN Y F, GE N, et al. Measuring the time-varying channel characteristics of the plasma sheath from the reflected signal[J]. IEEE Transactions on Plasma Science201442(12): 3975-3981.
30 LI L, ZHAO J X.LT Code with a new degree distribu-tion[C]∥2010 International Conference on Multimedia Information Networking and Security. Piscataway: IEEE Press, 2010: 531-535.
31 ZHANG H J, BAO W M, YANG M, et al. Adaptive classification fountain codes for reentry communication[J]. IEEE Access20197: 62911-62919.
32 ZHANG H J, YANG M, BAO W M, et al. Short-frame fountain code for plasma sheath with “communication windows”[J]. IEEE Transactions on Vehicular Technology202069(12): 15569-15579.
33 YANG M, TANG J C, LIU H Y, et al. A novel demodulation method based on spectral clustering for phase-modulated signals interrupted by the plasma sheath channel[J]. IEEE Transactions on Plasma Science202048(10): 3544-3551.
34 LIU H Y, LIU Y M, YANG M, et al. A joint demodulation and estimation algorithm for plasma sheath channel: Extract principal curves with deep learning[J]. IEEE Wireless Communications Letters20209(4): 433-437.
35 BOUTROS J, VITERBO E. Signal space diversity: A power- and bandwidth-efficient diversity technique for the Rayleigh fading channel[J]. IEEE Transactions on Information Theory199844(4): 1453-1467.
36 HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]∥2017 IEEE Wireless Communications and Networking Conference. Piscataway: IEEE Press, 2017.
37 LIU H Y, LIU Y M, YANG M, et al. On the characterizations of OTFS modulation over multipath rapid fading channel[J]. IEEE Transactions on Wireless Communications202322(3): 2008-2021.
文章导航

/