全驱系统理论及其在航空航天领域的应用专栏

带有参数精确估计的迭代学习滑模控制及应用

  • 方乐言 ,
  • 蒙晗 ,
  • 侯明哲
展开
  • 哈尔滨工业大学 航天学院,哈尔滨 150001
.E-mail: hithyt@hit.edu.cn

收稿日期: 2023-04-19

  修回日期: 2023-06-05

  录用日期: 2023-07-17

  网络出版日期: 2023-07-21

基金资助

国家自然科学基金(62073096);黑龙江省头雁行动计划

Iterative learning sliding mode control with precise parameter estimation and its application

  • Leyan FANG ,
  • Han MENG ,
  • Mingzhe HOU
Expand
  • School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
E-mail: hithyt@hit.edu.cn

Received date: 2023-04-19

  Revised date: 2023-06-05

  Accepted date: 2023-07-17

  Online published: 2023-07-21

Supported by

National Natural Science Foundation of China(62073096);Heilongjiang Touyan Innovation Team Program

摘要

针对一类做重复运动的不确定全驱系统,提出了一种带有未知参数精确估计的迭代学习自适应滑模控制算法。通过设计跟踪误差的期望轨迹,放宽了对系统初值条件的限制,并使系统在初始时刻便位于滑模面上,消除了滑模到达阶段,有利于提高系统鲁棒性。通过构造一组低通滤波器并引入遗忘因子和归一化技术,对参数估计误差进行了重构,并利用重构结果进行了微分-差分型自适应律设计。基于Lyapunov方法设计了迭代学习自适应滑模控制算法,证明了闭环系统信号的有界性以及跟踪误差和参数估计误差的渐近收敛性。最后,将所提出的迭代学习自适应滑模控制算法应用于航天器的绕飞控制中,并通过数值仿真验证了设计结果的有效性。

本文引用格式

方乐言 , 蒙晗 , 侯明哲 . 带有参数精确估计的迭代学习滑模控制及应用[J]. 航空学报, 2024 , 45(1) : 628889 -628889 . DOI: 10.7527/S1000-6893.2023.28889

Abstract

An iterative learning adaptive sliding mode control algorithm with precise estimation of unknown parameters is proposed for a class of uncertain fully actuated systems with repetitive motions. By designing a desired trajectory of the tracking error, the strict requirement on the system initial condition is relaxed and the system is ensured to be on the sliding mode surface at the initial moment, which eliminates the reaching phase of the sliding mode and is beneficial for improving the robustness of the system. By constructing a set of low-pass filters and introducing forgetting factors and the normalization technique, the parameter estimation errors are reconstructed, and then the reconstruction results are utilized to design the differential-difference adaptive laws. Based on the Lyapunov theory, an iterative learning adaptive sliding mode control algorithm is designed, and it is proved that all signals of the closed-loop system are bounded, and the tracking errors and the parameter estimation errors asymptotically converge to zero. Finally, the proposed iterative learning adaptive sliding mode control algorithm is applied to the fly-around control of spacecraft, and the effectiveness of the obtained results is verified via numerical simulations.

参考文献

1 LONG J T, WU F. Iterative-learning-control-based tracking for asteroid close-proximity operations[J]. Journal of Guidance, Control, and Dynamics201942(5): 1195-1203.
2 WU B L, WANG D W, POH E K. High precision satellite attitude tracking control via iterative learning control[J]. Journal of Guidance, Control, and Dynamics201538(3): 528-534.
3 HE W, MENG T T, HE X Y, et al. Iterative learning control for a flapping wing micro aerial vehicle under distributed disturbances[J]. IEEE Transactions on Cybernetics201949(4): 1524-1535.
4 FRENCH M, ROGERS E. Nonlinear iterative learning by an adaptive Lyapunov technique[C]∥Proceedings of the 37th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 1998: 175-180.
5 FRENCH M, ROGERS E. Non-linear iterative learning by an adaptive Lyapunov technique[J]. International Journal of Control200073(10): 840-850.
6 ZHANG C L, LI J M. Adaptive iterative learning control of non-uniform trajectory tracking for strict feedback nonlinear time-varying systems with unknown control direction[J]. Applied Mathematical Modelling201539(10/11): 2942-2950.
7 WEI J M, ZHANG Y A, BAO H. An exploration on adaptive iterative learning control for a class of commensurate high-order uncertain nonlinear fractional order systems[J]. IEEE/CAA Journal of Automatica Sinica20175(2): 618-627.
8 XU J X, TAN Y. A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties[J]. IEEE Transactions on Automatic Control200247(11): 1940-1945.
9 BU X H, HOU Z S. Adaptive iterative learning control for linear systems with binary-valued observations[J]. IEEE Transactions on Neural Networks and Learning Systems201829(1): 232-237.
10 YU Q X, HOU Z S. Adaptive fuzzy iterative learning control for high-speed trains with both randomly varying operation lengths and system constraints[J]. IEEE Transactions on Fuzzy Systems202129(8): 2408-2418.
11 CHEN Y, HUANG D Q, QIN N, et al. Adaptive iterative learning control for a class of nonlinear strict-feedback systems with unknown state delays[J]. IEEE Transactions on Neural Networks and Learning Systems202334(9): 6416-6427.
12 TAYEBI A, CHIEN C J. A unified adaptive iterative learning control framework for uncertain nonlinear systems[J]. IEEE Transactions on Automatic Control200752(10): 1907-1913.
13 CHIEN C J, TAYEBI A. Further results on adaptive iterative learning control of robot manipulators[J]. Automatica200844(3): 830-837.
14 CHIEN C J. A combined adaptive law for fuzzy iterative learning control of nonlinear systems with varying control tasks[J]. IEEE Transactions on Fuzzy Systems200816(1): 40-51.
15 ORTEGA R, NIKIFOROV V, GERASIMOV D. On modified parameter estimators for identification and adaptive control. A unified framework and some new schemes[J]. Annual Reviews in Control202050: 278-293.
16 XU J X, YAN R. On initial conditions in iterative learning control[J]. IEEE Transactions on Automatic Control200550(9): 1349-1354.
17 SUN M X, YAN Q Z. Error tracking of iterative learning control systems[J]. Acta Automatica Sinica201339(3): 251-262.
18 CHEN J Y. Adaptive iterative learning backstepping control for nonlinear strict-feedback systems[C]∥2020 IEEE 9th Data Driven Control and Learning Systems Conference. Piscataway: IEEE Press, 2020: 1054-1059.
19 CHEN Q, SHI H H, SUN M X. Echo state network-based backstepping adaptive iterative learning control for strict-feedback systems: An error-tracking approach[J]. IEEE Transactions on Cybernetics202050(7): 3009-3022.
20 段广仁. 高阶系统方法: I.全驱系统与参数化设计[J]. 自动化学报202046(7): 1333-1345.
  DUAN G R. High-order system approaches: I. Fully-actuated systems and parametric designs[J]. Acta Automatica Sinica202046(7): 1333-1345 (in Chinese).
21 段广仁. 高阶系统方法: II. 能控性与全驱性[J]. 自动化学报202046(8): 1571-1581.
  DUAN G R. High-order system approaches: II. Controllability and full-actuation[J]. Acta Automatica Sinica202046(8): 1571-1581 (in Chinese).
22 段广仁. 高阶系统方法: III. 能观性与观测器设计[J]. 自动化学报202046(9): 1885-1895.
  DUAN G R. High-order system approaches: III. Observability and observer design[J]. Acta Automatica Sinica202046(9): 1885-1895 (in Chinese).
23 CAI M, HE X, ZHOU D H. An active fault tolerance framework for uncertain nonlinear high-order fully-actuated systems[J]. Automatica2023152: 110969.
24 YU Y, LIU G P, HUANG Y, et al. Coordinated predictive secondary control for DC microgrids based on high-order fully actuated system approaches[J/OL]. IEEE Transactions on Smart Grid(2023-04-13)[2023-04-19]. .
25 XIAO F Z, CHEN L Q. Attitude control of spherical liquid-filled spacecraft based on high-order fully actuated system approaches[J]. Journal of Systems Science and Complexity202235(2): 471-480.
26 DUAN G R. High-order fully actuated system approaches: Part IV. Adaptive control and high-order backstepping[J]. International Journal of Systems Science202152(5): 972-989.
27 DUAN G R. High-order fully actuated system approaches: Part V. Robust adaptive control[J]. International Journal of Systems Science202152(10): 2129-2143.
28 LIU W Z, DUAN G R, HOU M Z. High-order command filtered adaptive backstepping control for second-and high-order fully actuated strict-feedback systems[J]. Journal of the Franklin Institute2023360(6): 3989-4015.
29 MENG R, HUA C C, LI K, et al. Adaptive event-triggered control for uncertain high-order fully actuated system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs202269(11): 4438-4442.
30 LIU X Q, CHEN M Y, SHENG L, et al. Adaptive fault-tolerant control for nonlinear high-order fully-actuated systems[J]. Neurocomputing2022495: 75-85.
31 DUAN G R. High-order fully actuated system approaches: Part VII. Controllability, stabilisability and parametric designs[J]. International Journal of Systems Science202152(14): 3091-3114.
32 ARANOVSKIY S, BOBTSOV A, ORTEGA R, et al. Parameters estimation via dynamic regressor extension and mixing[C]∥2016 American Control Conference. Piscataway: IEEE Press, 2016: 6971-6976.
33 HOU M Z, SHI W R, FANG L Y, et al. Adaptive dynamic surface control of high-order strict feedback nonlinear systems with parameter estimations[J]. Science China Information Sciences202266(5): 159203.
34 李敏,袁利,魏春岭. 基于混合状态机的航天器自主绕飞多模态控制[J]. 航空学报44(18): 328296.
  LI M, YUAN L, WEI C L. Spacecraft autonomous fly-around multi-mode control based-on hybrid state machine[J]. Acta Aeronautica et Astronautica Sinica44(18): 328296 (in Chinese).
35 韩飞, 吴限德, 段广仁, 等. 逼近与跟踪翻滚目标的双滑模面姿轨耦合控制[J]. 哈尔滨工程大学学报201839(1): 23-32.
  HAN F, WU X D, DUAN G R, et al. Attitude and orbit coupled dual sliding-mode surface control for approaching and tracking tumbling target[J]. Journal of Harbin Engineering University201839(1): 23-32 (in Chinese).
文章导航

/