模拟月面高温环境下120 N发动机点火特性和排气试验
收稿日期: 2023-06-02
修回日期: 2023-06-13
录用日期: 2023-07-11
网络出版日期: 2023-07-14
基金资助
国防预研项目(50922010801)
Ignition characteristics and exhaust experiment of 120 N engine at simulated high lunar temperature
Received date: 2023-06-02
Revised date: 2023-06-13
Accepted date: 2023-07-11
Online published: 2023-07-14
Supported by
National Defense Pre-research Foundation(50922010801)
为了考察月面高温环境下液体火箭发动机的工作能力,开展了双组元120 N自燃推进剂发动机高空模拟热试车,通过包覆热控组件和添加比例积分微分控制装置实现了对推进剂供应管路和电磁阀壳体的加热和保温,研究了常温和80~135 ℃保温对发动机点火时的稳态工作性能、脉冲工作性能的影响,验证了保温后进行长脉宽脉冲程序点火排出汽化推进剂的可行性。试验结果表明:各个高温条件下,发动机均可实现稳态和脉冲模式工作,稳定后稳态工作性能相当,基于推力测量的启动响应时间较常温条件下明显延长,关机时恢复至正常水平。受推进剂密度和四氧化二氮气液流动状态的综合影响,在保温80、90、105、120、135 ℃时,30 ms脉宽下首个脉冲推力冲量相对常温条件下的占比分别为80%、66%、31%、16%、17%。当脉宽小于或者大于启动响应时间时,推力冲量相较常温下的偏差值随脉宽增大均逐渐缩小。7组128 ms脉宽的脉冲程序可以基本排净推进剂供应管路内汽化的推进剂,排气程序结束后发动机脉冲工作性能恢复至正常水平。
陈锐达 , 陈夏超 , 陈泓宇 , 徐辉 , 洪鑫 . 模拟月面高温环境下120 N发动机点火特性和排气试验[J]. 航空学报, 2024 , 45(11) : 529112 -529112 . DOI: 10.7527/S1000-6893.2023.29112
To investigate the working capability of liquid rocket engines in the high temperature environment on the lunar surface, the high-altitude hot fire simulation test of a 120 N bipropellant rocket engine using hypergolic propellants is conducted. The thermal control assembly and the proportion integration derivative control device are used to control the heating and holding temperature of the propellant supply lines and solenoid valve housing. The effects of the holding temperature at normal atmospheric temperature and 80–135 ℃ on the steady-state and pulse working performance of the engine ignition are investigated. The feasibility of discharging the vaporized propellant through the long-pulse ignition procedure after holding is verified. The test results show that the engine can operate in both the steady state and the pulsed mode under all high temperature conditions, with comparable steady-state working performance after stabilization. The start-up response time based on thrust measurement is significantly longer than that under normal atmospheric temperature conditions, and returns to normal level at shutdown. Affected by the combined effect of the propellant density and the nitrogen tetroxide gas-liquid flow state, the first pulse thrust impulse at 30 ms pulse width relative to the normal atmospheric temperature condition is 80%, 66%, 31%, 16% and 17% at holding temperatures of 80 ℃, 90 ℃, 105 ℃, 120 ℃ and 135 ℃, respectively. When the pulse width is smaller or larger than the start-up response time, the deviation value of the thrust impulse compared with that at normal atmospheric temperature gradually decreases with increasing pulse width. The 7 sets of 128 ms pulse width can basically drain the vaporized propellant in the propellant supply lines, and the engine pulse working performance returns to the normal level after the exhaust procedure.
1 | 洪鑫, 章玉华, 魏彦祥, 等. 月面采样返回探测器推进系统设计与实现[J]. 上海航天(中英文), 2022, 39(6): 1-11. |
HONG X, ZHANG Y H, WEI Y X, et al. Design and implementation of propulsion system for lunar sampling and return probe[J]. Aerospace Shanghai (Chinese & English), 2022, 39(6): 1-11 (in Chinese). | |
2 | 叶青, 饶炜, 刘锋, 等. 火星着陆发动机羽流与火壤的相互作用[J]. 航空学报, 2022, 43(3): 626557. |
YE Q, RAO W, LIU F, et al. Interaction between engine plume and Martian soil during Mars landing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 626557 (in Chinese). | |
3 | 陈建新, 马巨印, 张冰强, 等. 绕月与月面探测热环境及影响因素研究[J]. 航天器环境工程, 2019, 36(6): 629-634. |
CHEN J X, MA J Y, ZHANG B Q, et al. The thermal environment of circumlunar orbit satellite or lunar rovers and influence factors[J]. Spacecraft Environment Engineering, 2019, 36(6): 629-634 (in Chinese). | |
4 | 郑凯, 饶炜, 向艳超, 等. 火星着陆发动机气凝胶材料热防护装置设计[J]. 航空学报, 2022, 43(3): 626568. |
ZHENG K, RAO W, XIANG Y C, et al. Design of aerogel-based thermal protector for Mars landing engine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 626568 (in Chinese). | |
5 | 刘昌国, 赵婷, 陈锐达, 等. 星用490 N发动机喷注器局部燃气泄漏试验[J]. 航空动力学报, 2021, 36(3): 664-672. |
LIU C G, ZHAO T, CHEN R D, et al. Test on injector local gas leakage of 490 N engine for satellites[J]. Journal of Aerospace Power, 2021, 36(3): 664-672 (in Chinese). | |
6 | 于杭健, 彭兢, 舒燕, 等. 月面高温下推力器可靠性试验[J]. 中国空间科学技术, 2021, 41(6): 123-131. |
YU H J, PENG J, SHU Y, et al. Thruster reliability experiment under high temperature on lunar surface[J]. Chinese Space Science and Technology, 2021, 41(6): 123-131 (in Chinese). | |
7 | HEARN H C. Design and development of a large bipropellant blowdown propulsion system[J]. Journal of Propulsion and Power, 1995, 11(5): 986-991. |
8 | 张炜, 鲍桐, 周星. 火箭推进剂[M]. 北京: 国防工业出版社, 2014: 186-187. |
ZHANG W, BAO T, ZHOU X. The rocket propellant[M]. Beijing: National Defense Industry Press, 2014: 186-187 (in Chinese). | |
9 | WU P K, WOLL P, STECHMAN C, et al. Qualification testing of a 2nd generation high performance apogee thruster: AIAA-2001-3253[R]. Reston: AIAA, 2001. |
10 | KRISMER D, DORANTES A, MILLER S, et al. Qualification testing of a high performance bipropellant rocket engine using MON-3 and hydrazine:AIAA-2003-4775[R]. Reston: AIAA, 2003. |
11 | STECHMAN R C, WOLL P, FULLER R, et al. A high performance liquid rocket engine for satellite main propulsion: AIAA-2000-3161 [R]. Reston: AIAA, 2000. |
12 | GOTZIG U, SCHULTE G, SOWA A. New generation 10N bipropellant MMH/NTO thruster with double seat valve: AIAA-1999-2594[R]. Reston: AIAA, 1999. |
13 | 周红玲, 姚锋, 杨成虎. 星用远地点发动机真空比冲与推进剂温度关系[J]. 推进技术, 2011, 32(5): 732-736. |
ZHOU H L, YAO F, YANG C H. Effect of propellant temperature on the specific impulse liquid apogee engine[J]. Journal of Propulsion Technology, 2011, 32(5): 732-736 (in Chinese). | |
14 | 聂万胜, 庄逢辰. 推进剂初始温度影响液体火箭发动机燃烧稳定性的数值模型[J]. 导弹与航天运载技术, 2000(4): 32-37. |
NIE W S, ZHUANG F C. A comprehensive numerical model for initial propellant temperature effecting liquid rocket engine combustion stability[J]. Missiles and Space Vehicles, 2000(4): 32-37 (in Chinese). | |
15 | DRISCOLL R J, GRIBBEN E, MARVIN M. Results from tests on a 10 N thruster using low temperature (-40 ℃) propellants: AIAA-2001-3254[R]. Reston: AIAA, 2001. |
16 | DRISCOLL R J, YAGER J, ROY M J, et al. Development tests on a 5-LBF bipropellant thruster using a platinum/rhodium thrust chamber: AIAA-1998-3357[R]. Reston: AIAA, 1998. |
17 | ONO D K, DRESSLER G A, KRUSE W D, et al. The design, development, and qualification of an advanced columbium liquid apogee engine (AC-LAE): AIAA-1998-3671[R]. Reston: AIAA, 1998. |
18 | SCHULTE G. High performance 400N MMH/NTO bipropellant engine for apogee boost maneuvers: AIAA-1999-2466[R]. Reston: AIAA, 1999. |
19 | MELCHIOR A. A new bipropellant rocket engine for orbital maneuvering: AIAA-1990-2052[R]. Reston: AIAA, 1990. |
20 | KIT B, EVERED D S. 火箭推进剂手册[M]. 张清, 译. 北京: 国防工业出版社, 1964: 195-196. |
KIT B, EVERED D S. Rocket propellant handbook[M]. ZHANG Q, translated. Beijing: National Defense Industry Press, 1964: 195-196 (in Chinese). | |
21 | WRIGHT A C. USAF propellant handbooks: Nitric acid/nitrogen tetroxide oxidizers, Volume 2:AFRPL-TR-76-76[R]. California: Air Force Systems Command, 1977: 94-95. |
22 | MARSH W R, KNOX B P. USAF propellant handbooks:Hydrazine fuels, Volume 1:AFRPL-TR-69-149[R]. California: Air Force Systems Command, 1970: 115-116. |
23 | 高思秘. 液体推进剂[M]. 北京: 宇航出版社, 1989: 56. |
GAO S M. The liquid propellant[M]. Beijing: Astronautic Publishing House, 1989: 56 (in Chinese). |
/
〈 |
|
〉 |