CNT树脂基复合材料断裂韧性的优化设计
收稿日期: 2023-05-08
修回日期: 2023-06-02
录用日期: 2023-07-11
网络出版日期: 2023-07-14
基金资助
国家资助博士后研究人员计划(GZC20232263);国家自然科学基金青年科学基金(52305165)
Optimal design of fracture toughness for CNT⁃epoxy composites
Received date: 2023-05-08
Revised date: 2023-06-02
Accepted date: 2023-07-11
Online published: 2023-07-14
Supported by
Postdoctoral Fellowship Program of CPSF(GZC20232263);Young Scientist Fund of National Natural Science Foundation of China(52305165)
与碳纤维相比,碳纳米管(CNT)具有更高的力学性能和更低的密度,是理想的树脂基复合材料增强相,在航空航天领域具有广阔应用前景。提出一套CNT树脂基复合材料单边缺口弯曲(SENB)试件制备工艺以及微纳观结构和参数的测量方法。采用不同长度的多壁碳纳米管和不同时长的臭氧处理,制备出SENB试件进行断裂韧性实验,定量分析微纳观参数界面长度和C—C键密度对宏观断裂韧性的影响,提出断裂韧性优化方案。研究结果表明:界面C—C键密度和臭氧处理时间呈线性关系;相对增韧率随着臭氧处理时间先大幅增加后大幅下降,即存在临界界面C—C键密度使得复合材料的相对增韧率最大;弱界面的相对增韧率随着界面长度先大幅增加后略微下降;强界面的相对增韧率随着界面长度先大幅增加后大幅下降;当断面的CNT拔出和拔断的占比相近(即复合材料失效形式从CNT拔出转变为拔断)时断裂韧性最大。
贾文斌 , 方磊 , 张根 , 史剑 , 何泽侃 , 宣海军 . CNT树脂基复合材料断裂韧性的优化设计[J]. 航空学报, 2024 , 45(7) : 428971 -428971 . DOI: 10.7527/S1000-6893.2023.28971
Compared with carbon fiber, Carbon Nanotube (CNT) is the ideal reinforcement phase for the epoxy composites,which has higher mechanical properties and lower density and, the great potential application in the aerospace field. A processing scheme was proposed for the CNT-epoxy Single-Edge Notched Bend (SENB) specimens, and the measuring methods of microscopic structure and parameters were proposed. The fracture toughness tests were conducted on the SENB specimens with different MWCNT lengths and oxidation times. The effects of the interfacial length and interfacial C—C bond density on the fracture toughness were quantitatively analyzed, and the fracture toughness optimization scheme was proposed. The experimental results show that: the interfacial C—C bond density and ozone oxidation time of CNTs show linear relationship; the relative fracture toughness enhancement rate increases rapidly with the increase of the ozone oxidation time, and then decreases dramatically. This means that there exists a critical interfacial C—C bond density, where the relative fracture toughness enhancement rate reaches maximum; for the weak interface, the relative fracture toughness enhancement rate increases rapidly with the increase of the interfacial length, and then decreases slightly; for the strong interface, the relative fracture toughness enhancement rate increases rapidly with the increase of the interfacial length, and then decreases dramatically; the fracture toughness reaches maximum, when the amounts of CNT pullout and CNT fracture are approximately equal,which means that the fracture toughness reaches maximum under the transition condition of the failure mode from the CNT pullout to CNT fracture.
1 | WENG J M, WEN W D, ZHANG H J. Multiaxial fatigue life prediction of composite materials[J]. Chinese Journal of Aeronautics, 2017, 30(3): 1012-1020. |
2 | JIA W B, WEN W D, FANG L. Low-velocity impact and post-impact biaxial residual strength tests and simulations of composite laminates[J]. Composite Structures, 2020, 235: 111758. |
3 | JIA W B, WEN W D, FANG L. Damage initiation and propagation in composites subjected to low-velocity impact: Experimental results, 3D dynamic damage model, and FEM simulations[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019, 36(3): 488-499. |
4 | 李军,刘燕峰,倪洪江,等.航空发动机用树脂基复合材料应用进展与发展趋势[J].材料工程,2022,50(6):49-60. |
LI J, LIU Y F, NI H H, et al. Application progress and development trend of resin matrix composites for aero engine[J]. Journal of Materials Engineering, 2022, 50(6): 49-60 (in Chinese). | |
5 | 刘大响. 一代新材料, 一代新型发动机: 航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45(10): 1-5. |
LIU D X. One generation of new material, one generation of new type engine: Development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering, 2017, 45(10): 1-5 (in Chinese). | |
6 | GAUR U, MILLER B. Microbond method for determination of the shear strength of a fiber/resin interface: Evaluation of experimental parameters[J]. Composites Science and Technology, 1989, 34(1): 35-51. |
7 | GIANOLA D S, EBERL C. Micro- and nanoscale tensile testing of materials[J]. JOM, 2009, 61(3): 24-35. |
8 | HUANG M Y, YAN H G, CHEN C Y, et al. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7304-7308. |
9 | 陈玉丽, 马勇, 潘飞, 等. 多尺度复合材料力学研究进展[J]. 固体力学学报, 2018, 39(1): 1-68. |
CHEN Y L, MA Y, PAN F, et al. Research progress in multi-scale mechanics of composite materials[J]. Chinese Journal of Solid Mechanics, 2018, 39(1): 1-68 (in Chinese). | |
10 | TANG L C, ZHANG H, HAN J H, et al. Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes[J]. Composites Science and Technology, 2011, 72(1): 7-13. |
11 | TANG L C, ZHANG H, WU X P, et al. A novel failure analysis of multi-walled carbon nanotubes in epoxy matrix[J]. Polymer, 2011, 52(9): 2070-2074. |
12 | CHEN Y L, LIU B, HE X Q, et al. Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites[J]. Composites Science and Technology, 2010, 70(9): 1360-1367. |
13 | 亚斌. 碳纳米管增强复合材料的制备与力学性能研究[D]. 大连: 大连理工大学, 2016. |
YA B. Research on the preparation and mechanical properties of carbon nanotubes reinforced composites[D].Dalian: Dalian University of Technology, 2016 (in Chinese). | |
14 | 施雪军, 任一丹. 碳纳米管/环氧树脂复合材料的导热及力学性能[J]. 平顶山学院学报, 2020, 35(5): 39-42. |
SHI X J, REN Y D. Thermal conductivity and mechanical properties of carbon nanotubes/epoxy resin composites[J]. Journal of Pingdingshan University, 2020, 35(5): 39-42 (in Chinese). | |
15 | 王卫芳, 陆宝山, 耿哲. 环氧树脂/石墨烯/多壁碳纳米管复合材料力学性能研究[J]. 塑料科技, 2019, 47(7): 24-27. |
WANG W F, LU B S, GENG Z. Study on mechanical properties of EP/GNP/MWCNT composites[J]. Plastics Science and Technology, 2019, 47(7): 24-27 (in Chinese). | |
16 | 王颖, 梅园, 李颖, 等. 表面改性对螺旋碳纳米管/环氧树脂复合材料力学性能的影响[J]. 高分子材料科学与工程, 2018, 34(10): 40-45. |
WANG Y, MEI Y, LI Y, et al. Effect of surface modification of helical carbon nanotubes on the mechanical properties of epoxy composites[J]. Polymer Materials Science and Engineering, 2018, 34(10):40-45 (in Chinese). | |
17 | MA P C, SIDDIQUI N A, MAROM G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(10): 1345-1367. |
18 | CHA J, KIM J, RYU S, et al. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets[J]. Composites Part B: Engineering, 2019, 162: 283-288. |
19 | DATSYUK V, KALYVA M, PAPAGELIS K, et al. Chemical oxidation of multiwalled carbon nanotubes[J]. Carbon, 2008, 46(6): 833-840. |
20 | DEPLANCKE T, LAME O, BARRAU S, et al. Impact of carbon nanotube prelocalization on the ultra-low electrical percolation threshold and on the mechanical behavior of sintered UHMWPE-based nanocomposites[J]. Polymer, 2017, 111: 204-213. |
21 | VIET N V, WANG Q, KUO W S. Effective Young’s modulus of carbon nanotube/epoxy composites[J]. Composites Part B: Engineering, 2016, 94: 160-166. |
22 | WANG H, XIE G Y, FANG M H, et al. Mechanical reinforcement of graphene/poly(vinyl chloride) composites prepared by combining the in-situ suspension polymerization and melt-mixing methods[J]. Composites Part B: Engineering, 2017, 113: 278-284. |
23 | CHEN Y L, WANG S T, LIU B, et al. Effects of geometrical and mechanical properties of fiber and matrix on composite fracture toughness[J]. Composite Structures, 2015, 122: 496-506. |
24 | KINLOCH I A, SUHR J, LOU J, et al. Composites with carbon nanotubes and graphene: An outlook[J]. Science, 2018, 362(6414): 547-553. |
/
〈 |
|
〉 |