专栏

位置约束下软式自主空中加油的抗干扰控制

  • 宋梦实 ,
  • 张帆 ,
  • 黄攀峰
展开
  • 1.西北工业大学 航天学院,西安 710072
    2.西北工业大学 智能机器人研究中心,西安 710072
.E-mail: pfhuang@nwpu.edu.cn

收稿日期: 2023-06-02

  修回日期: 2023-06-25

  录用日期: 2023-07-04

  网络出版日期: 2023-07-11

摘要

针对加油机不稳定飞行和复杂风扰下的软式自主空中加油系统,提出一种位置约束下可控锥套的抗干扰控制方法。首先,建立考虑加油机不稳定飞行和复杂风扰的软管动力学模型和可控锥套动力学模型,并进一步将可控锥套动力学模型变换为方便控制器设计的形式。然后,在动态面控制框架下,利用新型坐标变换方法处理系统耦合非线性,结合约束函数和障碍Lyapunov函数解决初值过大的位置约束,以及设计干扰观测器估计未知的集总干扰。最后,理论分析和仿真实验表明了所提方法处理初值过大的位置约束的有效性,以及抗干扰能力的优越性。

本文引用格式

宋梦实 , 张帆 , 黄攀峰 . 位置约束下软式自主空中加油的抗干扰控制[J]. 航空学报, 2023 , 44(20) : 629114 -629114 . DOI: 10.7527/S1000-6893.2023.29114

参考文献

1 REN J R, QUAN Q, LIU C J, et al. Docking control for probe-drogue refueling: An additive-state-decomposition-based output feedback iterative learning control method[J]. Chinese Journal of Aeronautics202033(3): 1016-1025.
2 SU Z K, WANG H L. Probe motion compound control for autonomous aerial refueling docking[J]. Aerospace Science and Technology201872: 1-13.
3 LIU Z J, HAN Z J, HE W. Adaptive fault-tolerant boundary control of an autonomous aerial refueling hose system with prescribed constraints[J]. IEEE Transactions on Automation Science and Engineering202219(4): 2678-2688.
4 全权, 魏子博, 高俊, 等. 软管式自主空中加油对接阶段中的建模与控制综述[J]. 航空学报201435(9): 2390-2410.
  QUAN Q, WEI Z B, GAO J, et al. A survey on modeling and control problems for probe and drogue autonomous aerial refueling at docking stage[J]. Acta Aeronautica et Astronautica Sinica201435(9): 2390-2410 (in Chinese).
5 WILLIAMSON W R, REED E, GLENN G J, et al. Controllable drogue for automated aerial refueling[J]. Journal of Aircraft201047(2): 515-527.
6 张进. 软管锥套运动的动力学建模与控制[D]. 南京: 南京航空航天大学, 2016: 46-47.
  ZHANG J. Dynamic modeling and control of the motion of the hose-drogue[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 46-47 (in Chinese).
7 KUK T, RO K. Design, test and evaluation of an actively stabilised drogue refuelling system[J]. The Aeronautical Journal2013117(1197): 1103-1118.
8 郭光光. 面向空中加油的锥套机器人稳定控制技术研究[D]. 西安: 西北工业大学, 2021: 6-8.
  GUO G G. Research on stability control technology of drogue robot for aerial refueling [D]. Xi’an: Northwestern Polytechnical University, 2021: 6-8 (in Chinese).
9 JI R H, YANG B Q, MA J, et al. Saturation-tolerant prescribed control for a class of MIMO nonlinear systems[J]. IEEE Transactions on Cybernetics202252(12): 13012-13026.
10 魏才盛. 航天器姿态预设性能控制方法研究[D]. 西安: 西北工业大学, 2019: 3-5.
  WEI C S. Research on attitude prescribed performance control of spacecraft[D]. Xi'an: Northwestern Polytechnical University, 2019: 3-5 (in Chinese).
11 WILLIAMS P. Deployment/retrieval optimization for flexible tethered satellite systems[J]. Nonlinear Dynamics200852(1): 159-179.
12 张强, 吴庆宪, 姜长生, 等. 基于Backstepping的非仿射非线性系统鲁棒控制[J]. 控制与决策201429(1): 19-26.
  ZHANG Q, WU Q X, JIANG C S, et al. Robust control for nonaffine nonlinear systems based on Backstepping[J]. Control and Decision201429(1): 19-26 (in Chinese).
13 CHEN M, WANG H Q, LIU X P, et al. Adaptive finite-time dynamic surface tracking control of nonaffine nonlinear systems with dead zone[J]. Neurocomputing2019366: 66-73.
14 BAI W, LIU P X, WANG H Q. Neural-network-based adaptive fixed-time control for nonlinear multiagent non-affine systems[J/OL]. IEEE Transactions on Neural Networks and Learning Systems, (2022-05-26)[2023-06-02]. .
15 LIU Y H, HUANG L P, XIAO D M. Adaptive dynamic surface control for uncertain nonaffine nonlinear systems[J]. International Journal of Robust and Nonlinear Control201727(4): 535-546.
16 胡伟, 万文章, 陈谋. 基于神经网络和干扰观测器的UAV自动着舰控制[J]. 航空学报202243(S1): 726963.
  HU W, WAN W Z, CHEN M. Neural network and disturbance observer based control for automatic carrier landing of UAV[J]. Acta Aeronautica et Astronautica Sinica202243(S1): 726963 (in Chinese).
17 CHEN Y Y, HUANG R, GE Y T, et al. Spherical formation tracking control of nonlinear second-order agents with adaptive neural flow estimate[J]. IEEE Transactions on Neural Networks and Learning Systems202233(10): 5716-5727.
18 刘璟龙, 张崇峰, 邹怀武, 等. 基于干扰观测器的柔性空间机器人在轨精细操作控制方法[J]. 航空学报202142(1): 523899.
  LIU J L, ZHANG C F, ZOU H W, et al. On-orbit precise operation control method for flexible joint space robots based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica202142(1): 523899 (in Chinese).
19 YONG K N, CHEN M, SHI Y, et al. Hybrid estimation strategy-based anti-disturbance control for nonlinear systems[J]. IEEE Transactions on Automatic Control202166(10): 4910-4917.
20 王云龙, 王泽政, 王永富, 等. 带有干扰观测器的线控转向系统复合自适应神经网络控制[J]. 控制理论与应用202138(4): 433-443.
  WANG Y L, WANG Z Z, WANG Y F, et al. Composite adaptive neural network control for steer-by-wire systems with disturbance observer[J]. Control Theory & Applications202138(4): 433-443 (in Chinese).
21 SHAO X L, WANG L W, LI J, et al. High-order ESO based output feedback dynamic surface control for quadrotors under position constraints and uncertainties[J]. Aerospace Science and Technology201989: 288-298.
22 邵书义, 陈谋, 招启军. 基于干扰观测器的四旋翼无人机离散时间容错控制[J]. 航空学报202041(S2): 724283.
  SHAO S Y, CHEN M, ZHAO Q J. Discrete-time fault-tolerant control for quadrotor UAV based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica202041(S2): 724283 (in Chinese).
23 SU Z K, LI C T, LIU Y H. Anti-disturbance dynamic surface trajectory stabilization for the towed aerial recovery drogue under unknown airflow disturbances[J]. Mechanical Systems and Signal Processing2021150: 107342.
24 MA H X, CHEN M, WU Q X. Disturbance observer-based safe tracking control for unmanned helicopters with partial state constraints and disturbances[J/OL]. IEEE/CAA Journal of Automatica Sinica, (2022-11-03)[2023-06-02]. .
25 SONG M S, ZHANG F, HUANG B X, et al. Anti-disturbance control for tethered aircraft system with deferred output constraints[J]. IEEE/CAA Journal of Automatica Sinica202310(2): 474-485.
26 SUN Y B, DUAN H B, XIAN N. Fractional-order controllers optimized via heterogeneous comprehensive learning pigeon-inspired optimization for autonomous aerial refueling hose-drogue system[J]. Aerospace Science and Technology201881: 1-13.
27 LU Y B, HUANG P F, MENG Z J. Adaptive neural network dynamic surface control of the post-capture tethered spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems202056(2): 1406-1419.
28 CHEN M, MA H X, KANG Y, et al. Adaptive neural safe tracking control design for a class of uncertain nonlinear systems with output constraints and disturbances[J]. IEEE Transactions on Cybernetics202252(11): 12571-12582.
29 DOGAN A, VENKATARAMANAN S, BLAKE W. Modeling of aerodynamic coupling between aircraft in close proximity[J]. Journal of Aircraft200542(4): 941-955.
文章导航

/