飞行器新概念气动布局设计专栏

流场波系引导的三维消波翼优化设计方法

  • 戴今钊 ,
  • 陈海昕
展开
  • 清华大学 航天航空学院,北京 100084

收稿日期: 2023-04-28

  修回日期: 2023-05-24

  录用日期: 2023-07-03

  网络出版日期: 2023-07-07

基金资助

国家自然科学基金(92052203)

Optimization design method of three⁃dimensional wave cancellation biplane derived by shock⁃wave morphology

  • Jinzhao DAI ,
  • Haixin CHEN
Expand
  • School of Aerospace Engineering,Tsinghua University,Beijing 100084,China

Received date: 2023-04-28

  Revised date: 2023-05-24

  Accepted date: 2023-07-03

  Online published: 2023-07-07

Supported by

National Natural Science Foundation of China(92052203)

摘要

为提升高超声速飞行器的升阻比,一种重要设计思想是让飞行器各组件的激波、膨胀波产生有利的相互作用,获得增升、减阻的效果。基于上述设计思想的高升阻比构型通常根据无黏二维/轴对称流场的激波-膨胀波关系设计。由于三维效应与空气黏性的影响,其实际性能相比理想设计性能往往存在较明显的退化。针对上述问题,提出流场波系引导的优化设计方法。不同于以气动性能指标为目标的传统优化方法,该方法以设计流场的波系形态为目标引导几何参数的优化方向。设计方法在一种主翼、上翼产生有利干扰的三维消波翼的设计中得到应用验证。通过将优化构型的流场、气动性能与根据二维无黏方法设计的初始构型对比,证明了优化设计方法的有效性。通过与菱形翼对比,验证了消波翼在设计工况下相比于常规构型的升阻比优势。

本文引用格式

戴今钊 , 陈海昕 . 流场波系引导的三维消波翼优化设计方法[J]. 航空学报, 2024 , 45(6) : 628942 -628942 . DOI: 10.7527/S1000-6893.2023.28942

Abstract

To improve the lift-to-drag ratio of hypersonic vehicles, an important idea is to construct favorable interactions between shock waves and expansion waves forming on different parts of the vehicle. In the existing design methods based on this idea, the geometric parameters are calculated by the shock-wave and expansion-wave relationships of two-dimensional or axisymmetric inviscid flow fields. Due to the influence of three-dimensional effect and viscosity, the high lift-to-drag ratio configurations designed by existing methods shows significant performance degradation compared with ideal design performance. To solve this problem, an optimization design method derived by shock-wave morphology is proposed. This method takes the target shock-wave morphology instead of the aerodynamic performance as the objective to guide the optimization direction of geometric parameters. The method is applied to a three-dimensional wave cancellation biplane where the main wing and the upper wing have favorable interference. The optimized configuration outperforms the initial configuration designed by the two-dimensional inviscid method in terms of both shock-wave morphology and aerodynamic performance, which proves the effectiveness of the proposed optimization design method. Compared with the diamond wing, the wave cancellation biplane has the advantage in the lift-to-drag ratio under the design condition.

参考文献

1 KüCHEMANN D. The aerodynamic design of aircraft: a detailed introduction to the current aerodynamic knowledge and practical guide to the solution of aircraft design problems[M]. Oxford: Pergamon Press, 1978
2 CORDA S, ANDERSON J. Viscous optimized hypersonic waveriders designed from axisymmetric flow fields[C]∥ Proceedings of the 26th Aerospace Sciences Meeting. Reston: AIAA, 1988.
3 吴子牛, 白晨媛, 李娟, 等. 高超声速飞行器流动特征分析[J]. 航空学报201536(1): 58-85.
  WU Z N, BAI C Y, LI J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica201536(1): 58-85 (in Chinese).
4 刘荣健, 白鹏. 基于超声速有益干扰原理的气动构型概念综述[J]. 航空学报202041(9): 023784.
  LIU R J, BAI P. Concept of aerodynamic configuration based on supersonic favorable interference principle: review[J]. Acta Aeronautica et Astronautica Sinica202041(9): 023784 (in Chinese).
5 KUSUNOSE K, MATSUSHIMA K, MARUYAMA D. Supersonic biplane—A review[J]. Progress in Aerospace Sciences201147(1): 53-87.
6 MORRIS O A, STATES U. Aerodynamic characteristics in pitch of several ring-wing-body configurations at a Mach number of 2.2[M]. Washington, D. C.: National Aeronautics and Space Administration, 1962.
7 LAMB M, MORRIS O A. Aerodynamic characteristics in pitch of a modified half ring wing body combination and a swept wing body combination at Mach 2.16 to 3.70[R]. Washington, D. C.: National Aeronautics and Space Administration, 1968.
8 Mack R J, Morris O A. Aerodynamic characteristics of a parasol-wing-body combination utilizing favorable lift interference at Mach numbers from 3.00 to 4.63[R]. Washington, D. C.: National Aeronautics and Space Administration, 1968.
9 KULFAN R. Application of hypersonic favorable aerodynamic interference concepts to supersonic aircraft[C]∥Proceedings of the Aircraft Systems and Technology Conference. Reston: AIAA, 1978.
10 崔凯, 李广利, 胡守超, 等. 高速飞行器高压捕获翼气动布局概念研究[J]. 中国科学: 物理学 力学 天文学201343(5): 652-661.
  CUI K, LI G L, HU S C, et al. Conceptual studies of the high pressure zone capture wing configuration for high speed air vehicles[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 201343(5): 652-661 (in Chinese).
11 CUI K, LI G L, XIAO Y, et al. High-pressure capturing wing configurations[J]. AIAA Journal201755(6): 1909-1919.
12 ZHAI J, ZHANG C N, WANG F M, et al. Design of a new supersonic biplane[J]. Acta Astronautica2020175: 216-233.
13 HOOD R, KRIEGER R, GREGOIRE J. The impact of constraints on advanced supersonic cruise and maneuvering missile concepts[C]∥ Proceedings of the 18th Aerospace Sciences Meeting. Reston: AIAA, 1980.
14 XU Y Z, XU Z Q, LI S G, et al. A hypersonic lift mechanism with decoupled lift and drag surfaces[J]. Science China Physics, Mechanics and Astronomy201356(5): 981-988.
15 MARUYAMA D, MATSUSHIMA K, KUSUNOSE K, et al. Three-dimensional aerodynamic design of low-wave-drag supersonic biplane using inverse problem method[J]. Journal of Aircraft200946(6): 1906-1918.
16 DING F, LIU J, HUANG W, et al. Boundary-layer viscous correction method for hypersonic forebody/inlet integration[J]. Acta Astronautica2021189: 638-657.
17 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
18 HERRMANN C, KOSCHEL W. Experimental investigation of the internal compression inside a hypersonic intake[C]∥ Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002.
19 REINARTZ B U, HERRMANN C D, BALLMANN J, et al. Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment[J]. Journal of Propulsion and Power200319(5): 868-875.
文章导航

/