专栏

软式拖曳捕获器自主对接控制系统设计与车载试验

  • 罗飞 ,
  • 胡志勇 ,
  • 李军府 ,
  • 马泽孟 ,
  • 艾俊强
展开
  • 航空工业第一飞机设计研究院,西安 710089
.E-mail: 15624950251@163.com

收稿日期: 2023-04-23

  修回日期: 2023-06-12

  录用日期: 2023-07-03

  网络出版日期: 2023-07-07

基金资助

军科委创新基金(20-163-03-27-002-003-01)

Design and on⁃vehicle demonstration of autonomous docking control system for soft towed grabber

  • Fei LUO ,
  • Zhiyong HU ,
  • Junfu LI ,
  • Zemeng MA ,
  • Junqiang AI
Expand
  • AVIC the First Aircraft Institute,Xi’an 710089,China

Received date: 2023-04-23

  Revised date: 2023-06-12

  Accepted date: 2023-07-03

  Online published: 2023-07-07

Supported by

Innovation Fund of the Science and Technology Commission of the Central Military Commission of the Communist Party of China(20-163-03-27-002-003-01)

摘要

软式拖曳捕获器受尾流场扰动、刚柔耦合多体牵引系统约束、载机振动等扰动,导致捕获器末端运动复杂,自主对接与捕获控制难度高。针对软式拖曳捕获器自主对接与捕获控制系统,设计了满足自主对接与捕获控制要求的直接力位姿解耦控制,并集成基于机器学习的视觉定位传感系统,形成了整套软式拖曳捕获器自主对接与捕获无人机控制系统。通过按照相似准则搭建的车载试验测试平台,对所设计的软式拖曳捕获器自主对接控制系统进行地面车载试验测试,结合捕获器动力学建模分析,开展直接力位置阻尼与操纵控制模块仿真优化与多轮次车载试验参数整定,形成了适用于软式拖曳捕获器空中自主对接与捕获的控制系统,可用于下一步空基全尺寸软式拖曳捕获器自主对接与捕获试验。

本文引用格式

罗飞 , 胡志勇 , 李军府 , 马泽孟 , 艾俊强 . 软式拖曳捕获器自主对接控制系统设计与车载试验[J]. 航空学报, 2023 , 44(20) : 628921 -628921 . DOI: 10.7527/S1000-6893.2023.28921

Abstract

The soft dragging grabber is subject to the disturbances such as air wake field disturbance, rigid-flexible coupling multi-body traction system constraints and carrier vibration, resulting in a complex movement of the end of the grabber and severe difficulty in autonomous docking and capture control. In this paper, a position-attitute decoupling control based direct force is designed to meet the requirements of autonomous docking and capture control of the soft towed grabber. A visual positioning sensor system based on machine learning is integrated to form a complete set of control systems of the soft towed grabber for autonomous docking and capture of the UAV. Through the vehicle-mounted test platform built according to similar principles, the ground-mounted test of the autonomous docking control system of the designed soft drag grabber is carried out. Based on the dynamic modeling analysis of the grabber, the simulation optimization of the direct force position damping and position control module is carried out. With multiple rounds of vehicle test parameter setting, a control system suitable for autonomous docking and capture of soft towed grabber in the air is developed, which can be used for the next step of air-based autonomous docking and capture tests of the full-scale soft towed grabber.

参考文献

1 曹莉, 耿斌斌, 周亮, 等. 无人机集群发射与回收技术发展研究[J]. 空天防御20192(2): 68-72.
  CAO L, GENG B B, ZHOU L, et al. Research on UAVS launch and recovery technology development[J]. Air & Space Defense20192(2): 68-72 (in Chinese).
2 向锦武, 董希旺, 丁文锐, 等. 复杂环境下无人集群系统自主协同关键技术[J]. 航空学报202243(10): 527570.
  XIANG J W, DONG X W, DING W R, et al. Key technologies for autonomous cooperation of unmanned swarm systems in complex environments[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527570 (in Chinese).
3 王辉, 贾自凯, 金忍, 等. 无人机视觉引导对接过程中的协同目标检测[J]. 航空学报202243(1): 324854.
  WANG H, JIA Z K, JIN R, et al. Cooperative object detection in UAV-based vision-guided docking[J]. Acta Aeronautica et Astronautica Sinica202243(1): 324854 (in Chinese).
4 甄子洋, 江驹, 孙绍山. 无人机集群作战协同控制与决策[M]. 北京: 国防工业出版社, 2022: 51-105.
  ZHEN Z Y, JIANG J, SUN S S. Cooperative control and decision of UAV swarm operations[M]. Beijing: National Defense Industry Press, 2022: 51-105 (in Chinese).
5 王宏伦, 刘一恒, 苏子康. 无人机软管式自主空中加油精准对接控制[J]. 电光与控制202027(9): 1-8.
  WANG H L, LIU Y H, SU Z K. Precise docking control for UAV autonomous aerial refueling[J]. Electronics Optics & Control202027(9): 1-8 (in Chinese).
6 苏子康, 陈海通, 徐忠楠. 空中拖曳系统建模与控制技术研究进展[J]. 飞航导弹2021(7): 31-40.
  SU Z K, CHEN H T, XU Z N. Research progress on modeling and control technology of aerial towing system[J]. Aerodynamic Missile Journal2021(7): 31-40 (in Chinese).
7 SUN L, BEARD R W, COLTON M B, et al. Dynamics and control of cable-drogue system in aerial recovery of Micro Air Vehicles based on Gauss’s Principle[C]∥ 2009 American Control Conference. Piscataway: IEEE Press, 2009: 4729-4734.
8 BORST R, GREISZ G, QUYNN A. Fuzzy logic control algorithm for suppressing E-6A Long Trailing Wire Antenna wind shear induced oscillations[C]∥ Proceedings of the Guidance, Navigation and Control Conference. Reston, Virigina: AIAA, 1993.
9 FEZANS N, JANN T. Towards automation of aerial refuelling manoeuvres with the probe-and-drogue system: modelling and simulation[J]. Transportation Research Procedia201829: 116-134.
10 HALL K, BENNETT A, BRIDGES P. Optimal guidance for airborne cable pickup system[C]∥ Proceedings of the 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference. Reston, Virigina: AIAA, 1984.
11 COCHRAN J E Jr, INNOCENTI M, NO T S, et al. Dynamics and control of maneuverable towed flight vehicles[J]. Journal of Guidance, Control, and Dynamics199215(5): 1245-1252.
12 FERRIN J, NICHOLS J, MCLAIN T. Design and control of a maneuverable towed aerial vehicle[C]∥ Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston, Virigina: AIAA, 2012: AIAA2012-4606.
13 BOURMISTROV A S, HILL R D, RISEBOROUGH P. Nonlinear control law for aerial towed target[J]. Journal of Guidance, Control, and Dynamics199518(6): 1232-1238.
14 SU Z K, LI C T, LIU Y H. Anti-disturbance dynamic surface trajectory stabilization for the towed aerial recovery drogue under unknown airflow disturbances[J]. Mechanical Systems and Signal Processing2021150: 107342.
15 SU Z K, WANG H L, LI N, et al. Exact docking flight controller for autonomous aerial refueling with back-stepping based high order sliding mode[J]. Mechanical Systems and Signal Processing2018101: 338-360.
16 LIU Y H, WANG H L, SU Z K, et al. Deep learning based trajectory optimization for UAV aerial refueling docking under bow wave[J]. Aerospace Science and Technology201880: 392-402.
17 SU Z K, WANG H L. Probe motion compound control for autonomous aerial refueling docking[J]. Aerospace Science and Technology201872: 1-13.
18 SU Z K, WANG H L, YAO P, et al. Back-stepping based anti-disturbance flight controller with preview methodology for autonomous aerial refueling[J]. Aerospace Science and Technology201761: 95-108.
19 LUO F, ZHANG J H, LYU P F, et al. Carrier-based aircraft precision landing using direct lift control based on incremental nonlinear dynamic inversion[J]. IEEE Access202210: 55709-55725.
20 罗飞, 张军红, 王博, 等. 基于直接升力与动态逆的舰尾流抑制方法[J]. 航空学报202142(12): 124770.
  LUO F, ZHANG J H, WANG B, et al. Air wake suppression method based on direct lift and nonlinear dynamic inversion control[J]. Acta Aeronautica et Astronautica Sinica202142(12): 124770 (in Chinese).
文章导航

/