In order to address the cooperative control problem of using spacecraft formation approaching and close flying around the non-cooperative target, a distributed prescribed performance control method based on the fully-actuated system theory is proposed in consideration of external interference and unexpected orbital maneuvers. First, A relative dynamic model is established between the service spacecraft formation and the non-cooperative target based on the line-of-sight coordinate system, and the fully-actuated control law is constructed to reduce the complexity of controller design. Furthermore, a distributed agreed-time pre-scribed performance controller is designed using topology theory to ensure the control performance of the spacecraft formation around the target. In addition, an extended state observer is employed to observe and compensate for the uncertainties and dis-turbances in the system, thereby improving the control precision of the spacecraft formation around the target. Finally, the effec-tiveness of the designed control method is verified by two sets of flying around simulation.
[1]魏才盛, 罗建军, 殷泽阳.航天器姿态预设性能控制方法综述[J].宇航学报, 2019, 40(10):1167-1176
[2]WEI C S, LUO J J, YIN Z Y.A Review of Prescribed Performance Control for Spacecraft Attitude[J].Journal of Astronautics, 2019, 40(10):1167-1176
[3]殷泽阳, 罗建军, 魏才盛, 等.非合作目标接近与跟踪的低复杂度预设性能控制[J].宇航学报, 2017, 38(8):855-864
[4]YIN Z Y, LUO J J, WEI C S, et al.Low Complexity Prescribed Performance Control for Approaching and Tracking a Non-Cooperative Target[J].Journal of As-tronautics, 2017, 38(8):855-864
[5]HUANG Y, JIA Y.Adaptive Fixed-Time Relative Posi-tion Tracking and Attitude Synchronization Control for Non-Cooperative Target Spacecraft Fly-Around Mis-sion[J].Journal of the Franklin Institute, 2017, 354(18):8461-8489
[6]黄宇嵩, 田栋, 李洪珏, 等.一种翻滚非合作航天器抵近绕飞避障轨迹规划和跟踪控制方法[J].空间控制技术与应用, 2021, 47(3):1-8
[7]HUANG Y S, TIAN D, Li H J, et al.A Trajectory Plan-ning and Tracking Algorithm for the Tumbling Non-Cooperative Spacecraft Approach,Flying Around and Obstacle Avoidance[J].Aerospace Control and Applica-tion, 2021, 47(3):1-8
[8]WANG Y, JI H.Input-to-State Stability-Based Adaptive Control for Spacecraft Fly-Around with Input Satura-tion[J].IET Control Theory & Applications, 2020, 14(10):1365-1374
[9]徐影, 张进, 于沫尧, 等.多星近距离绕飞观测任务姿轨耦合控制研究[J].中国空间科学技术, 2019, 39(6):21-29
[10]XU Y, ZHANG J, YU M Y, et al.Attitude and Orbit Coupling Control for Fly-Around Observation of Mul-ti-Satellite Proximity Operation[J].Chinese Space Sci-ence and Technology, 2019, 39(6):21-29
[11]BAI S, HAN C, RAO Y, et al.New Fly-Around Formations for An Elliptical Reference Orbit[J].Acta Astronautica, 2020, 171(-):335-351
[12]常燕, 陈韵, 鲜勇, 等.椭圆轨道上目标监测绕飞轨道构型设计与构型保持[J].系统工程与电子技术, 2010, 39(6):1317-1324
[13]CHANG Y, CHEN Y, XIAN Y, et al.Configuration De-sign and Maintenance of Fly-Around Trajectory for Target Monitoring in Elliptical Orbit[J].Systems Engi-neering and Electronics, 2010, 39(6):1317-1324
[14]ZHANG R, HAN C, RAO Y, et al.Spacecraft Fast Fly-Around Formations Design Using the Bi-Teardrop Configuration[J].Journal of Guidance, Control, and Dynamics, 2018, 41(7):1542-1555
[15]HUANG Y, JIA Y.Distributed Finite-Time Output Feedback Synchronization Control for Six-DOF Spacecraft Formation Subject to Input Saturation[J].IET Control Theory & Applications, 2018, 12(4):532-542
[16]ZHOU N, XIA Y, FU M, et al.Distributed Cooperative Control Design for Finite-Time Attitude Synchroniza-tion of Rigid Spacecraft[J].IET Control Theory & Ap-plications, 2015, 9(10):1561-1570
[17]李学辉, 宋申民.慢旋非合作目标快速绕飞避碰控制[J].控制与决策, 2018, 33(9):1612-1618
[18]LI X H, SONG S M.Slowly Rotating Non-Cooperative Target Fast Fly-Around Collision Avoidance Control[J].Control and Decision, 2018, 33(9):1612-1618
[19]黄艺, 贾英民.非合作目标绕飞任务的航天器鲁棒姿轨耦合控制[J].控制理论与应用, 2018, 35(10):1405-1414
[20]HUANG Y, JIA Y M.Robust Relative Position and At-titude Control for Non-Cooperative Fly-Around Mis-sion[J].Control Theory & Applications, 2018, 35(10):1405-1414
[21]DUAN G R.High-order Fully Actuated System Ap-proaches: Part IModels and Basic Procedure[J].Inter-national Journal of Systems Science, 2021, 52(2):422-435
[22]DUAN G R.High-Order Fully Actuated System Ap-proaches: Part IIGeneralized Strict-Feedback Sys-tems[J].International Journal of Systems Science, 2021, 52(3):437-454
[23]ZHOU B, DUAN G R.On the Role of Zeros in the Pole Assignment of Scalar High-Order Fully Actuated Line-ar Systems[J].Journal of Systems Science and Com-plexity, 2022, 35(2):535-542
[24]DUAN G Q, Liu G P.Attitude and Orbit Optimal Con-trol of Combined Spacecraft via a Fully-Actuated Sys-tem Approach[J].Journal of Systems Science and Complexity, 2022, 35(2):623-640
[25]XIAO F Z, CHEN L.Attitude Control of Spherical Liquid-Filled Spacecraft Based on High-Order Fully Actuated System Approaches[J].Journal of Systems Science and Complexity, 2022, 35(2):471-480
[26]ZHANG K, DUAN G R, MA M.Adaptive Sliding-Mode Control for Spacecraft Relative Position Track-ing with Maneuvering Target[J].International Journal of Robust and Nonlinear Control, 2018, 28(18):5786-5810
[27]宁君, 陈汉民, 李伟, 等.基于扩张状态观测器的有限时间船舶编队控制[J].中国舰船研究, 2023, 18(1):60-66
[28]NING J, CHEN H M, LI W, et al.Finite-Time Ship Formation Control Based on Extended State Observ-er[J].Chinese Journal of Ship Research, 2023, 18(1):60-66
[29]YIN Z Y, SULEMAN A, LUO J, et al.Appointed-Time Prescribed Performance Attitude Tracking Control via Double Performance Functions[J].Aerospace Science and Technology, 2019, 93(-):1-10
[30]KHALIL H K.Nonlinear Systems[M], Third Edition, Pren-tice-Hall, Englewood Cliffs, NJ, USA, 2002.
[31]BAINOV D D, SIMEONOV P S.Integral Inequalities and Applications[M]. Springer Science & Business Media, 1992.
[32]SONTAG E D.Mathematical Control Theory: Deter-ministic Finite Dimensional Systems[M]. Springer-Verlag, 1998.