论文

共轴刚性旋翼气动及噪声特性的参数影响分析

  • 刘琦 ,
  • 史勇杰 ,
  • 胡志远 ,
  • 徐国华
展开
  • 南京航空航天大学 直升机动力学全国重点实验室,南京 210016
.E-mail: huzhiyuan@nuaa.edu.cn

收稿日期: 2023-04-11

  修回日期: 2023-05-15

  录用日期: 2023-07-03

  网络出版日期: 2023-07-07

基金资助

国家自然科学基金(11972190)

Parameter effects analysis on aerodynamic and aeroacoustic characteristics of coaxial rigid rotor

  • Qi LIU ,
  • Yongjie SHI ,
  • Zhiyuan HU ,
  • Guohua XU
Expand
  • National Key Laboratory of Helicopter Aeromechanics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

Received date: 2023-04-11

  Revised date: 2023-05-15

  Accepted date: 2023-07-03

  Online published: 2023-07-07

Supported by

National Natural Science Foundation of China(11972190)

摘要

共轴刚性旋翼直升机是未来高速直升机发展的重要方向之一。研究了其前飞时旋翼桨-涡干扰(BVI)流场及气动噪声特性,探究了参数变化对其气动和噪声特性的影响规律。为精细捕捉旋翼尾迹流场,提出了一套高精度的共轴刚性旋翼直升机流场计算方法,该方法基于雷诺平均Navier-Stokes(RANS)方程为控制方程,并用五阶WENO-Z格式重构空间变量,以运动嵌套网格系统模拟旋翼桨叶运动。同时,使用了基于Farassat 1A公式的旋翼噪声计算方法,对旋翼桨-涡干扰噪声具有较高捕捉精度。应用所建立的方法,分别对孤立单旋翼、无机身共轴旋翼和有机身共轴旋翼流场进行计算对比,研究了该构型旋翼自身桨-涡干扰、旋翼间干扰和机身干扰对共轴刚性旋翼气动及噪声特性的影响。然后还计算分析了不同几何参数对共轴刚性旋翼气动及噪声特性的影响,得出了一些新的结论。

本文引用格式

刘琦 , 史勇杰 , 胡志远 , 徐国华 . 共轴刚性旋翼气动及噪声特性的参数影响分析[J]. 航空学报, 2024 , 45(9) : 528856 -528856 . DOI: 10.7527/S1000-6893.2023.28856

Abstract

The coaxial rigid rotor helicopter is an essential direction for the development of high-speed helicopters in the future. This paper studies the flow field of Blade-Vortex Interaction (BVI) and aeroacoustics characteristics of the coaxial rigid rotor helicopter during forward flight and explores the influence of parameter variations on its aerodynamic and aeroacoustics characteristics. To capture the rotor wake flow field accurately, a high-precision calculation method for the flow field of a coaxial rigid rotor helicopter is proposed. The method employs the Reynolds-Averaged Navier-Stokes (RANS) equation as the governing equation, adopts the fifth-order WENO-Z scheme to reconstruct the state variables, and simulates the motion of rotor blades using a moving overset grid system. Furthermore, a rotor noise calculation method based on Farassat 1A formula, which has high precision in capturing rotor BVI noise, is also utilized. By using those methods, the flow field of single isolated rotor, coaxial rotor without fuselage and coaxial rotor with fuselage are calculated and compared, and the effects of rotor self-BVIs, interference between rotors, and fuselage interference on the aerodynamic and aeroacoustics characteristics of the coaxial rigid rotor are studied. Additionally, the influence of different geometric parameters on the aerodynamic and aeroacoustics characteristics of the coaxial rigid rotor are calculated and analyzed, and new conclusions are obtained.

参考文献

1 CHENEY M C. The ABC helicopter[J]. Journal of the American Helicopter Society196914(4): 10-19.
2 JIA Z Q, LEE S. Impulsive loading noise of a lift-offset coaxial rotor in high-speed forward flight[J]. AIAA Journal201958(2): 687-701.
3 PAGLINO V M, BENO E. Full-scale wind tunnel investigation of the advancing blade concept rotor system: AD734338[R]. Fort Eustis: U.S. Army Air Mobility Research and Development Laboratory, 1971.
4 BAGAI A, LEISHMAN J G. Free-wake analysis of tandem, tilt-rotor and coaxial rotor configurations[J]. Journal of the American Helicopter Society199641(3): 196-207.
5 KIM H W, DURAISAMY K, BROWN R. Aeroacoustics of a coaxial rotor in level flight[C]∥The 64th AHS Annual Forum. West Palm Beach: AHS, 2008: 558-578
6 KIM H W, KENYON A R, BROWN R E, et al. Interactional aerodynamics and acoustics of a hingeless coaxial helicopter with an auxiliary propeller in forward flight[J]. The Aeronautical Journal2009113(1140): 65-78.
7 LAKSHMINARAYAN V K, BAEDER J D. High-resolution computational investigation of trimmed coaxial rotor aerodynamics in hover[J]. Journal of the American Helicopter Society200954(4): 042008.
8 QI H T, XU G H, LU C L, et al. A study of coaxial rotor aerodynamic interaction mechanism in hover with high-efficient trim model[J]. Aerospace Science and Technology201984: 1116-1130.
9 WALSH G D. A preliminary acoustic investigation of a coaxial helicopter in high-speed flight[D]. Park: The Pennsylvania State University, 2016.
10 招启军, 朱正, 原昕. 桨叶外形对共轴刚性旋翼悬停性能影响的CFD分析[J]. 南京航空航天大学学报201749(5): 653-661.
  ZHAO Q J, ZHU Z, YUAN X. CFD analyses on effects of blade shape on hover performance of coaxial rigid rotors[J]. Journal of Nanjing University of Aeronautics & Astronautics201749(5): 653-661 (in Chinese).
11 JIA Z, LEE S, SHARMA K, et al. Aeroacoustic analysis of a lift-offset coaxial rotor using high-fidelity CFD/CSD loose coupling simulation[J]. Journal of the American Helicopter Society202065(1): 1-15.
12 DENG J H, FAN F, LIU P A, et al. Aerodynamic characteristics of rigid coaxial rotor by wind tunnel test and numerical calculation[J]. Chinese Journal of Aeronautics201932(3): 568-576.
13 BROCKLEHURST A, BARAKOS G N. A review of helicopter rotor blade tip shapes[J]. Progress in Aerospace Sciences201356: 35-74.
14 SUN Y, XU G H, SHI Y J. Parametric effect of blade surface blowing on the reduction of rotor blade–vortex interaction noise[J]. Journal of Aerospace Engineering202235(1): 04021110.
15 BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics2008227(6): 3191-3211.
16 FARASSAT F. Linear acoustic formulas for calculation of rotating blade noise[J]. AIAA Journal198119(9): 1122-1130.
17 YU Y H. Rotor blade–vortex interaction noise[J]. Progress in Aerospace Sciences200036(2): 97-115.
18 HARRINGTON R D. Full-scale-tunnel investigation of the static-thrust performance of a coaxial helicopter rotor: NACA-TN-2318[R]. Washington D.C.: NACA, 1951
19 SCHULTZ K J, SPLETTSTOESSER W, JUNKER B, et al. A parametric windtunnel test on rotorcraft aerodynamics and aeroacoustics (Helishape)—Test procedures and representative results[J]. The Aeronautical Journal1997101(1004): 143-154.
20 BIAVA M, BINDOLINO G, VIGEVANO L. Single blade computations of helicopter rotors in forward flight: AIAA-2003-0052[R]. Reston: AIAA, 2003.
21 BOXWELL D A, SCHMITZ F H, SPLETTSTOESSER W R, et al. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations[J]. Journal of the American Helicopter Society198732(1): 3-12.
22 YU Y H, TUNG C, GALLMAN J, et al. Aerodynamics and acoustics of rotor blade-vortex interactions[J]. Journal of Aircraft199532(5): 970-977.
23 STRAWN R C, DUQUE E P N, AHMAD J. Rotorcraft aeroacoustics computations with overset-grid CFD methods[J]. Journal of the American Helicopter Society199944(2): 132-140.
文章导航

/