材料工程与机械制造

基于磁流变技术的主动控制拦阻装置设计与分析

  • 郝嘉煜 ,
  • 彭一明 ,
  • 魏小辉 ,
  • 马辉
展开
  • 1.南京航空航天大学 航空航天结构力学及控制全国重点实验室,南京 210016
    2.南京航空航天大学 飞行器先进设计技术国防重点学科实验室,南京 210016
    3.中国航空工业集团公司金城南京机电液压工程研究中心,南京 211106

收稿日期: 2023-04-04

  修回日期: 2023-05-07

  录用日期: 2023-06-07

  网络出版日期: 2023-07-07

基金资助

航空科学基金(20200028052010);国防卓越青年科学基金(2018-JCJQ-ZQ-053);中央高校基本科研业务费专项资金(NT2022002);江苏省自然科学基金(BK20220910);国家自然科学基金(52202441)

Design and analysis of active control arresting device based on MR technology

  • Jiayu HAO ,
  • Yiming PENG ,
  • Xiaohui WEI ,
  • Hui MA
Expand
  • 1.State Key Laboratory of Mechanics and Control for Aerospace Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.Key Laboratory of Fundamental Science for National Defense?Advanced Design Technology of Flight Vehicle,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    3.AVIC Jincheng Nanjing Engineering Institute of Aircraft System,Nanjing 211106,China

Received date: 2023-04-04

  Revised date: 2023-05-07

  Accepted date: 2023-06-07

  Online published: 2023-07-07

Supported by

Aeronautical Science Foundation of China(20200028052010);National Defense Outstanding Youth Science Foundation(2018-JCJQ-ZQ-053);The Fundamental Research Funds for the Central Universities(NT2022002);Natural Science Foundation of Jiangsu Province(BK20220910);National Natural Science Foundation of China(52202441)

摘要

针对传统液压拦阻在面对多种类无人机拦阻功能适配性不足的缺点,基于磁流变技术和主动控制技术,提出了一种闭环拦阻装置。运用AMESim搭建了拦阻系统动力学仿真模型,并基于序列二次规划法对拦阻系统结构参数进行了选定,基于选定的参数,对拦阻过程进行动态特性仿真,并对主动控制系统介入前后性能进行比对分析。为了更准确的模拟无人机拦阻过程的动态特性,基于有限段法构建拦阻索,并引入VL Motion构建多学科协同联合仿真。研究结果表明:主动控制介入后挂索瞬间峰值加速度相比加入前下降23%,拦阻距离下降9%,拦阻时间缩短3%,并且在挂索后无人机持续减速的过程中,加入主动控制后无人机加速度变化更加缓和;针对不同质量无人机,基于磁流变技术的主动控制拦阻装置比液压拦阻系统的适配性更好,拦阻距离和拦阻过载更加集中可控。

本文引用格式

郝嘉煜 , 彭一明 , 魏小辉 , 马辉 . 基于磁流变技术的主动控制拦阻装置设计与分析[J]. 航空学报, 2024 , 45(12) : 428818 -428818 . DOI: 10.7527/S1000-6893.2023.28818

Abstract

To address the shortcomings of traditional hydraulic arresting system which faces the lack of adaptability of multiple types of unmanned aerial vehicles, UAVs, a closed-loop arresting device based on magnetorheological, MR technology and active control technology is proposed. AMESim is used to build the dynamic simulation model, and the structural parameters of the arresting system are selected based on the sequential quadratic programming method. Furthermore, the dynamic characteristics of arresting process are simulated, and the performance before and after the active control intervention is compared and analyzed. It more accurately simulate the dynamic characteristics of UAV arresting process, a more realistic arresting cable model is constructed based on the finite segment method. VL Motion is introduced to constitute the multidisciplinary collaborative co-simulation. The research results show that: by adding active control, the instantaneous peak acceleration of the UAV catching by cable decreases by 23%. The arresting distance decreases by 9% and the arresting time decreases by 3%. During the deceleration process, the deceleration changes of the UAV are more acceptable when the active control is added. In the face of different weights of UAVs, suitability of the new arresting device is better than the traditional hydraulic arresting system. The arresting distance and the acceleration of UAV are more centralized and controllable for the new arresting device.

参考文献

1 王超磊, 樊会涛. 美军新型制空作战概念研究[J]. 航空兵器202229(3): 8-13.
  WANG C L, FAN H T. Research on new air combat concepts of US military[J]. Aero Weaponry202229(3): 8-13 (in Chinese).
2 郭建国, 周敏, 郭宗易, 等. 马赛克战下的协同作战技术[J]. 航空兵器202128(1): 1-5.
  GUO J G, ZHOU M, GUO Z Y, et al. Cooperative combat technology under mosaic warfare[J]. Aero Weaponry202128(1): 1-5 (in Chinese).
3 刘雷, 刘大为, 王晓光, 等. 无人机集群与反无人机集群发展现状分析及展望[J]. 航空学报202243(S1): 726908.
  LIU L, LIU D W, WANG X G, et al. Analysis of the development status and outlook of UAV clusters and anti-UAV clusters[J]. Acta Aeronautica et Astronautica Sinica202243(S1): 726908 (in Chinese).
4 卢伟, 马晓平, 周明, 等. 无人机绳钩回收系统的动力学特性仿真分析[J]. 航空学报201536(10): 3295-3304.
  LU W, MA X P, ZHOU M, et al. Simulation analysis of dynamic characteristic of UAV rope-hook recovery system[J]. Acta Aeronautica et Astronautica Sinica201536(10): 3295-3304 (in Chinese).
5 KRISTIAN K, FOSSEN T I, JOHANSEN T A. Autonomous recovery of a fixed‐wing UAV using a net suspended by two multirotor UAVs[J]. Journal of Field Robotics201835(5): 717-731.
6 吴成富, 邵朋院, 马松辉, 等. 无人机伞降定点回收技术研究[J]. 计算机仿真201229(6): 104-107.
  WU C F, SHAO P Y, MA S H, et al. Study on assigned point parachute recovery of UAV[J]. Computer Simulation201229(6): 104-107 (in Chinese).
7 屈耀红, 张峰, 谷任能, 等. 基于距离信息的小型固定翼无人机深度失速回收方法: CN107991884A[P]. 2018-05-04.
  QU Y H, ZHANG F, GU R N, et al. Deep stall recovery method for small fixed-wing UAV based on range information: CN107991884A[P]. 2018-05-04 (in Chinese).
8 谭立国, 杨小艳, 宋申民, 等. 面向小型舰船的固定翼无人机海上回收方法综述[J]. 哈尔滨工业大学学报201951(10): 1-10.
  TAN L G, YANG X Y, SONG S M, et al. An overview of marine recovery methods of WAV for small ships[J]. Journal of Harbin Institute of Technology201951(10): 1-10 (in Chinese).
9 王科雷, 周洲, 马悦文, 等. 垂直起降固定翼无人机技术发展及趋势分析[J]. 航空工程进展202213(5): 1-13.
  WANG K L, ZHOU Z, MA Y W, et al. Development and trend analysis of vertical takeoff and landing fixed wing UAV[J]. Advances in Aeronautical Science and Engineering202213(5):1-13 (in Chinese).
10 洪达, 郑震山, 周磊. 美国侧边吊臂发射回收无人机的特点及应用前景[J]. 科技导报202240(5): 132-137 (in Chinese).
  HONG D, ZHENG Z S, ZHOU L. Analysis of US military sidearm system characteristics and its application prospect[J]. Science & Technology Review202240(5): 132-137 (in Chinese).
11 苏子康, 徐忠楠, 李春涛, 等. 伸缩套臂式无人机空基回收建模与对接控制[J]. 航空学报202344(1): 326315.
  SU Z K, XU Z N, LI C T, et al. Modeling and docking control of aerial recovery in the form of telescopic boom[J]. Acta Aeronautica et Astronautica Sinica202344(01): 326315 (in Chinese).
12 杨启帆. 无人机拦阻着陆仿真系统快速原型设计与开发[D]. 南京: 南京航空航天大学, 2020: 9-28.
  YANG Q F. Design and development of rapid prototype for UAV arresting and landing simulation system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 9-28 (in Chinese).
13 黄精琦. 某小型海用无人飞行器发射与回收技术研究[D]. 南京: 南京航空航天大学, 2019: 45-61.
  HUANG J Q. Research on launching and recycling technology of a small marine unmanned aerial vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 45-61 (in Chinese).
14 王海东, 毕玉泉, 杨炳恒, 等. MK7-3阻拦装置拦阻特点分析[J]. 科学技术与工程201111(9): 2038-2042.
  WANG H D, BI Y Q, YANG B H, et al. Characteristic analysis of MK7-3 arresting gear[J]. Science Technology and Engineering201111(9): 2038-2042 (in Chinese).
15 居本祥, 吕冰. 磁流变阻尼器集成式电磁活塞结构设计及磁路分析[J]. 磁性材料及器件202253(2): 39-45.
  JU B X, LV B. Structural design and magnetic circuit analysis of integrated electromagnetic piston for magnetorheological damper[J]. Journal of Magnetic Materials and Devices202253(2): 39-45 (in Chinese).
16 TU J W. Design and fabrication of 500-kN large-scale MR damper[J]. Journal of Intelligent Material Systems and Structures201122(5): 475-487.
17 瞿伟廉, 刘嘉, 涂建维, 等. 500 kN足尺磁流变液阻尼器设计的关键技术[J]. 地震工程与工程振动200727(2): 124-130.
  QU W L, LIU J, TU J W, et al. Crucial techniques for design 500 kN large-scale MR damper[J]. Earthquake Engineering and Engineering200727(2): 124-130 (in Chinese).
18 祝世兴, 耿凡, 刘小川, 等. 旋板式磁流变减摆器结构设计[J]. 液压气动与密封201838(6): 17-22.
  ZHU S X, GENG F, LIU X C, et al. Structure design of rotary plate magnetorheological shimmy damper [J]. Hydraulics Pneumatics and Seals201838(6): 17-22 (in Chinese).
19 程涛. 舰载机阻拦索磁流变阻尼器力学建模研究[D]. 沈阳: 沈阳航空航天大学, 2012: 26-44.
  CHENG T. Study on mechanical modeling of carrier-based aircraft arresting cable on magneto-rheological damper[D]. Shenyang: Shenyang Aerospace University, 2012: 26-44 (in Chinese).
20 傅莉, 刘涛, 周彦凯, 等. 基于磁流变液的舰载机拦阻过程模糊PID控制[J]. 火力与指挥控制201540(2): 32-35.
  FU L, LIU T, ZHOU Y K, et al. Fuzzy PID control of shipboard aircraft arresting process based on magneto-rheological fluid [J]. Fire Control & Command Control201540(2): 32-35 (in Chinese).
21 董晗, 刘昕晖, 王昕, 等.并联式液压混合动力系统制动能量回收特性[J]. 吉林大学学报(工学版)201444(6): 1655-1663.
  DONG H, LIU X H, WANG X, et al. Parallel hydraulic hybrid braking regenerative characteristics[J]. Journal of Jilin University (Engineering and Technology Edition)201444(6):1655-1663 (in Chinese).
22 王林军, 邓启程. 基于序列二次规划法的结构可靠度计算方法[J]. 组合机床与自动化加工技术2018537(11): 12-15.
  WANG L J, DENG Q C. Structural reliability calculation method based on sequential quadratic programming[J]. Modular Machine Tool & Automatic Manufacturing Technique2018537(11): 12-15 (in Chinese).
23 严旭飞, 陈仁良. 倾转旋翼机动态倾转过渡过程的操纵策略优化[J]. 航空学报201738(7): 59-69.
  YAN X F, CHEN R L. Control strategy optimization of dynamic conversion procedure of tilt-rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica201738(7): 59-69 (in Chinese).
24 ZHANG Z, PENG Y, LIANG T. Research on lateral dynamics safety margins of carrier-based aircraft arresting[J]. The Aeronautical Journal2022126(1303): 1593-1615.
25 谢朋朋, 彭一明, 魏小辉, 等. 计及弯折波的舰载飞机偏心拦阻动力学分析[J]. 北京航空航天大学学报202046(8): 1582-1591.
  XIE P P, PENG Y M, WEI X H, et al. Dynamic analysis of off-center arrest for carrier-based aircraft considering kink-wave [J]. Journal of Beijing University of Aeronautics and Astronautics202046(8): 1582-1591 (in Chinese).
26 张皓晨. 阻拦系统有限元建模与舰载机阻拦安全性研究[D]. 哈尔滨: 哈尔滨工程大学, 2021: 9-16.
  ZHANG H C. Finite element modeling and safety study of carrier-based aircraft arresting system [D]. Harbin: Harbin Engineering University, 2021: 9-16 (in Chinese).
27 高乐乐, 刘荣梅, 姚念奎, 等. 考虑弯折波的舰载机拦阻过程仿真分析[J]. 力学与实践202244(2): 285-292.
  GAO L L, LIU R M, YAO N K, et al. Simulation analysis of arresting process for carrier aircraft considering kink-wave [J]. Mechanics in Engineering202244(2): 285-292 (in Chinese).
文章导航

/