输入量化下航天器位姿一体化预设时间控制
收稿日期: 2023-02-15
修回日期: 2023-04-07
录用日期: 2023-06-21
网络出版日期: 2023-07-07
基金资助
国家自然科学基金(62073102);国家重点研发计划(2021YFC2202900)
Predefined-time integrated pose control for spacecraft under input quantization
Received date: 2023-02-15
Revised date: 2023-04-07
Accepted date: 2023-06-21
Online published: 2023-07-07
Supported by
National Natural Science Foundation of China(62073102);National Key Research and Development Program of China(2021YFC2202900)
航天器在轨抢修或维护等空间近距任务中,往往要求执行任务的航天器在限定的时间窗口和有限通信带宽的条件下,实现对目标的位姿跟踪。针对其姿轨耦合控制问题,提出了一种带有输入量化的姿轨一体化预设时间控制方法。首先,在Lie群SE(3)框架下,建立了相对运动航天器位姿一体化误差动力学模型。其次,引入了输入量化机制,减小控制器到执行机构间的通信频次。接着,基于推导的实际预设时间稳定引理,结合反步法设计了一种非奇异预设时间位姿跟踪控制器。为提高系统鲁棒性,设计新型自适应律估计并补偿系统总扰动,并利用量化器参数抑制量化误差;该方法能够在不依赖系统初始状态、输入量化和扰动信息未知的情况下实现预设时间内稳定,且稳定时间上界可由一个控制参数预先设定。然后,基于Lyapunov理论证明了系统的稳定性。最后,数值仿真结果验证了该方法的有效性。
张洪珠 , 叶东 , 孙兆伟 . 输入量化下航天器位姿一体化预设时间控制[J]. 航空学报, 2023 , 44(22) : 328558 -328558 . DOI: 10.7527/S1000-6893.2023.28558
In the close-space missions such as spacecraft on-orbit repair and maintenance, it is often demanded for the spacecraft, which performs the task, to track the target spacecraft’s position and attitude simultaneously within a specific time window and limited communication bandwidth. To solve the attitude-orbit coupling control problem involved, an integrated predefined-time control strategy is proposed. Firstly, an error dynamic model of position and attitude integration for relative motion spacecraft is established in the framework of Lie group SE(3). Then, the input quantization mechanism is introduced to reduce the communication frequency from the control system to the actuators. Subsequently, based on the derived practical predefined-time stable lemma, together with the back-stepping method, a nonsingular predefined-time pose tracking controller is designed. To improve the robust property of the system, a novel adaptive updating strategy to estimate and compensate for the system’s lump disturbance, and the quantizer parameters are exploited to reject the quantization error. This strategy could guarantee the predefined-time stability for the system, in the case of independent on the initial states, input quantization and the unknown disturbance, in addition, the upper bound of system’s convergence time is appointed by a control parameter in advance. Next, based on Lyapunov stability theory, the stability of the closed-loop system is proved. Finally, the simulation results verify the effectiveness of the proposed strategy.
1 | DONG H L, YANG X B. Finite-time prescribed performance control for space circumnavigation mission with input constraints and measurement uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3209-3222. |
2 | ZHANG L J, XIA Y Q, SHEN G H, et al. Fixed-time attitude tracking control for spacecraft based on a fixed-time extended state observer[J]. Science China Information Sciences, 2021, 64(11): 1-17. |
3 | LU K F, XIA Y Q. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence[J]. Automatica, 2013, 49(12): 3591-3599. |
4 | 王辉, 胡庆雷, 石忠, 等. 基于反步法的航天器有限时间姿态跟踪容错控制[J]. 航空学报, 2015, 36(6): 1933-1939. |
WANG H, HU Q L, SHI Z, et al. Backstepping-based finite-time fault-tolerant attitude tracking control for spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 1933-1939 (in Chinese). | |
5 | 张剑桥, 叶东, 孙兆伟. SE(3)上姿轨耦合航天器高精度快速终端滑模控制[J]. 宇航学报, 2017, 38(2): 176-184. |
ZHANG J Q, YE D, SUN Z W. High-accuracy fast terminal sliding mode control for coupled spacecraft on SE(3)[J]. Journal of Astronautics, 2017, 38(2): 176-184 (in Chinese). | |
6 | 胡庆雷, 王辉, 石忠, 等. 航天器新型非奇异饱和终端滑模姿态控制[J]. 宇航学报, 2015, 36(4): 430-437. |
HU Q L, WANG H, SHI Z, et al. Novel non-singular saturated terminal sliding mode based attitude controller for spacecraft[J]. Journal of Astronautics, 2015, 36(4): 430-437 (in Chinese). | |
7 | ZOU A M. Finite-time output feedback attitude tracking control for rigid spacecraft[J]. IEEE Transactions on Control Systems Technology, 2014, 22(1): 338-345. |
8 | GUI H C, VUKOVICH G. Finite-time angular velocity observers for rigid-body attitude tracking with bounded inputs[J]. International Journal of Robust and Nonlinear Control, 2017, 27(1): 15-38. |
9 | SHAKOURI A, ASSADIAN N. A framework for prescribed-time control design via time-scale transformation[J]. IEEE Control Systems Letters, 2022, 6: 1976-1981. |
10 | LIU Y, LI H Y, LU R Q, et al. An overview of finite/fixed-time control and its application in engineering systems[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(12): 2106-2120. |
11 | 马广富, 朱庆华, 王鹏宇, 等. 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018, 39(6): 321763. |
MA G F, ZHU Q H, WANG P Y, et al. Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 321763 (in Chinese). | |
12 | HUANG B, LI A J, GUO Y, et al. Fixed-time attitude tracking control for spacecraft without unwinding[J]. Acta Astronautica, 2018, 151: 818-827. |
13 | GONG K J, LIAO Y, WANG Y. Adaptive fixed-time terminal sliding mode control on SE(3) for coupled spacecraft tracking maneuver[J]. International Journal of Aerospace Engineering, 2020, 2020: 1-15. |
14 | ZOU A M, KUMAR K D, DE RUITER A H J. Fixed-time attitude tracking control for rigid spacecraft[J]. Automatica, 2020, 113: 108792. |
15 | WU R, WEI C Z, YANG F, et al. FxTDO-based non-singular terminal sliding mode control for second-order uncertain systems[J]. IET Control Theory & Applications, 2018, 12(18): 2459-2467. |
16 | ZHANG J Q, BIGGS J D, YE D, et al. Finite-time attitude set-point tracking for thrust-vectoring spacecraft rendezvous[J]. Aerospace Science and Technology, 2020, 96: 105588. |
17 | JIMéNEZ-RODRíGUEZ E, MU?OZ-VáZQUEZ A J, SáNCHEZ-TORRES J D, et al. A note on predefined-time stability [J]. IFAC-PapersOnLine, 2018, 51(13): 520-525. |
18 | 徐世昊, 关英姿, 浦甲伦, 等. VTHL运载器再入返回预设时间滑模控制[J]. 航空学报, 2023, 44(7): 326857. |
XU S H, GUAN Y Z, PU J L, et al. Predefined-time sliding mode control for VTHL launch vehicle in reentry phase[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 326857 (in Chinese). | |
19 | XU C, WU B L, ZHANG Y C. Distributed prescribed-time attitude cooperative control for multiple spacecraft[J]. Aerospace Science and Technology, 2021, 113: 106699. |
20 | MORASSO P, SANGUINETI V, SPADA G. A computational theory of targeting movements based on force fields and topology representing networks[J]. Neurocomputing, 1997, 15(3-4): 411-434. |
21 | CAO Y, CAO J F, SONG Y D. Practical prescribed time control of euler–lagrange systems with partial/full state constraints: A settling time regulator-based approach[J]. IEEE Transactions on Cybernetics, 2022, 52(12): 13096-13105. |
22 | WANG F, MIAO Y, LI C Y, et al. Attitude control of rigid spacecraft with predefined-time stability[J]. Journal of the Franklin Institute, 2020, 357(7): 4212-4221. |
23 | XIE S Z, CHEN Q. Adaptive nonsingular predefined-time control for attitude stabilization of rigid spacecrafts[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(1): 189-193. |
24 | ZHANG T T, ZHANG S J, GUO F Z, et al. Prescribed time attitude containment control for satellite cluster with bounded disturbances[J]. ISA Transactions, 2023, 137: 160-174. |
25 | 朱战霞, 马家瑨, 樊瑞山. 基于螺旋理论描述的空间相对运动姿轨同步控制[J]. 航空学报, 2016, 37(9): 2788-2798. |
ZHU Z X, MA J J, FAN R S. Synchronization control of relative motion for spacecraft with screw theory based description[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2788-2798 (in Chinese). | |
26 | LYKE J C. Plug-and-play satellites[J]. IEEE Spectrum, 2012, 49(8): 36-42. |
27 | SUN R, SHAN A D, ZHANG C X, et al. Quantized fault-tolerant control for attitude stabilization with fixed-time disturbance observer[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(2): 449-455. |
28 | ZHANG S, YANG Z. Adaptive finite-time control on SE(3) for spacecraft final proximity maneuvers with input quantization[J]. International Journal of Aerospace Engineering, 2021, 2021: 1-25. |
29 | LIU R X, CAO X B, LIU M, et al. 6-DOF fixed-time adaptive tracking control for spacecraft formation flying with input quantization[J]. Information Sciences, 2019, 475: 82-99. |
30 | 梅亚飞, 廖瑛, 龚轲杰, 等. SE(3)上航天器姿轨耦合固定时间容错控制[J]. 航空学报, 2021, 42(11): 525089. |
MEI Y F, LIAO Y, GONG K J, et al. Fixed-time fault-tolerant control for coupled spacecraft on SE(3)[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 525089 (in Chinese). | |
31 | LEE D, SANYAL A K, BUTCHER E A. Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance[J]. Journal of Guidance, Control, and Dynamics, 2014, 38(4): 587-600. |
32 | XING L T, WEN C Y, ZHU Y, et al. Output feedback control for uncertain nonlinear systems with input quantization[J]. Automatica, 2016, 65: 191-202. |
33 | ZHANG J Q, YE D, SUN Z W, et al. Extended state observer based robust adaptive control on SE(3) for coupled spacecraft tracking maneuver with actuator saturation and misalignment[J]. Acta Astronautica, 2018, 143: 221-233. |
34 | 许闯, 吴宝林. 输入饱和下多航天器分布式固定时间输出反馈姿态协同控制[J]. 航空学报, 2023, 44(10): 327465. |
XU C, WU B L. Distributed fixed-time output-feedback attitude consensus control for multiple spacecraft with input saturation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 327465 (in Chinese). | |
35 | YU J P, SHI P, ZHAO L. Finite-time command filtered backstepping control for a class of nonlinear systems[J]. Automatica, 2018, 92: 173-180. |
36 | MU?OZ-VáZQUEZ A J, SáNCHEZ-TORRES J D, JIMéNEZ-RODRíGUEZ E, et al. Predefined-time robust stabilization of robotic manipulators[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1033-1040. |
37 | 路遥. 基于跟踪微分器的高超声速飞行器Backstepping控制[J]. 航空学报, 2021, 42(11): 524737. |
LU Y. Backstepping control for hypersonic flight vehicles based on tracking differentiator[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524737 (in Chinese). | |
38 | JIANG L, WANG Y E, XU S J. Integrated 6-DOF orbit-attitude dynamical modeling and control using geometric mechanics[J]. International Journal of Aerospace Engineering, 2017, 2017: 1-13. |
39 | YE D, ZOU A M, SUN Z W. Predefined-time predefined-bounded attitude tracking control for rigid spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 464-472. |
/
〈 |
|
〉 |