共轴双旋翼/尾推桨/传动耦合系统动力学建模与固有特性分析
收稿日期: 2023-04-28
修回日期: 2023-06-11
录用日期: 2023-06-25
网络出版日期: 2023-06-27
基金资助
国防科技重点实验室基金(61422202101);国家自然科学基金面上项目(12272169)
Dynamic modeling and modal analysis of coaxial rotors/auxiliary propeller/drive train coupled system
Received date: 2023-04-28
Revised date: 2023-06-11
Accepted date: 2023-06-25
Online published: 2023-06-27
Supported by
Foundation of National Key Laboratory of Rotorcraft Aeromechanics(61422202101);National Natural Science Foundation of China(12272169)
高速直升机采用了前行桨叶、降旋翼转速、尾推等技术来实现高速飞行,其中共轴刚性双旋翼、变转速传动系统、高功率输出尾推桨所构成的耦合系统给传统直升机扭振分析带来了新的挑战。针对高速直升机多模式复杂耦合扭振系统,提出了一种基于传递矩阵法的新建模策略。相比较于传统有限元方法建模策略,该方法无需对传动链进行当量化处理,也不需要基于哈密顿原理推导系统的整体控制方程,根据系统的拓扑结构即可直接写出系统的控制方程。此外,通过引入分叉虚铰链单元,将任意拓扑结构的传动链都解耦成多条相互独立的链式传动链,从而进一步显著降低了建模难度。最后基于该方法研究了高速直升机不同工作模式下的耦合扭振动力学。
李博 , 王潇 . 共轴双旋翼/尾推桨/传动耦合系统动力学建模与固有特性分析[J]. 航空学报, 2024 , 45(9) : 528945 -528945 . DOI: 10.7527/S1000-6893.2023.28945
High-speed helicopters use technologies such as advancing blade, reduced rotor rotation speed, and auxiliary propeller to achieve high-speed flight. The coupled system formed by coaxial rigid dual-rotor, variable speed drive train system, and high-power output tail propeller brings new challenges to traditional helicopter torsional vibration analysis. Firstly, a new modeling strategy based on the transfer matrix method is innovatively proposed to address the problem of complex multi-mode coupling torsional vibration system of high-speed helicopters. Compared to the modeling strategy of conventional finite element method, the present method does not require the equivalent processing of the drive train system, nor does it require the derivation of the overall governing equations based on Hamilton’s principle. System governing equations can be directly obtained according to the topology structure of the system. In addition, a virtual geared branch element is innovatively introduced to decouple the topology of the drive train system into multiple independent chain systems, further significantly reducing the difficulty of modeling. Finally, the coupled torsional vibration dynamics of high-speed helicopters under different working conditions is studied based on the proposed method.
1 | LEISHMAN J G. Principles of helicopter aerodynamics[M]. Cambridge:Cambridge University Press, 2016. |
2 | BURGESS R. The ABCTM rotor-a historical perspective[C]∥ Proceedings of the 60th Annual Forum of the American Helicopter Society. Fairfax: American Helicopter Society International, 2004: 7-10. |
3 | BLACKWELL R, MILLOTT T. Dynamics design characteristics of the Sikorsky X2 technologyTM demonstrator aircraft[C]∥ Proceedings of the 64th Annual Forum of the American Helicopter Society. Fairfax: American Helicopter Society International, 2008: 886. |
4 | HOPKINS S, RUZICKA G C, ORMISTON R A. Analytical investigations of coupled rotorcraft/engine/drive train dynamics[C]∥ Proceedings of the American Helicopter Society 2nd Interational Region Aero Mechanics Specialists Conference. Fairfax: American Helicopter Society International, 1995: 1-22. |
5 | SIDLE S, SRIDHARAN A, CHOPRA I. Coupled vibration prediction of rotor-airframe-drivetrain-engine dynamics[C]∥ AHS 74th Annual Forum, 2018. |
6 | 王建军, 毛振中, 卿立伟, 等. 直升机动力传动系统扭转振动整体传递矩阵分析[J]. 航空动力学报, 2008, 23(10): 1805-1812. |
WANG J J, MAO Z Z, QING L W, et al. Torsional vibration analysis of helicopter power transmission system by the multi-shaft transfer matrix method[J]. Journal of Aerospace Power, 2008, 23(10): 1805-1812 (in Chinese). | |
7 | 许兆棠, 朱如鹏. 直升机尾传动系扭转振动的分析[J]. 航空学报, 2007, 28(2): 425-431. |
XU Z T, ZHU R P. Torsional vibration analysis for a helicopter tail drive system[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 425-431 (in Chinese). | |
8 | 薛海峰, 向锦武, 张晓谷. 直升机旋翼/动力/传动系统模型及耦合影响[J]. 北京航空航天大学学报, 2004, 30(5): 438-443. |
XUE H F, XIANG J W, ZHANG X G. Coupled helicopter rotor/propulsion/transmission system torsional vibration analytical model and coupled influence investigation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(5): 438-443 (in Chinese). | |
9 | WEISS F, KESSLER C. Drivetrain influence on the lead?lag modes of hingeless helicopter rotors[J]. CEAS Aeronautical Journal, 2020, 11(1): 67-79. |
10 | WU J S, CHEN C H. Torsional vibration analysis of gear-branched systems by finite element method[J]. Journal of Sound and Vibration, 2001, 240(1): 159-182. |
11 | 芮筱亭, 贠来峰, 陆毓琪, 等. 多体系统传递矩阵法及其应用[M]. 北京: 科学出版社, 2008. |
RUI X T, YUN L F, LU Y Q, et al. Transfer matrix method of multibody system and its applications[M]. Beijing: Science Press, 2008 (in Chinese). | |
12 | RUI X T, ABBAS L K, YANG F F, et al. Flapwise vibration computations of coupled helicopter rotor/fuselage: application of multibody system dynamics[J]. AIAA Journal, 2018, 56(2): 818-835. |
13 | RUI X T, ZHANG J S, ZHOU Q B. Automatic deduction theorem of overall transfer equation of multibody system[J]. Advances in Mechanical Engineering, 2014, 6: 378047. |
14 | HOLZER H. Analysis of torsional vibration[M]. Berlin :Springer, 1921. |
15 | MYKLESTAD N O. A new method of calculating natural modes of uncoupled bending vibration of airplane wings and other types of beams[J]. Journal of the Aeronautical Sciences, 1944, 11(2): 153-162. |
16 | PESTEL E C, LECKIE F A, KURTZ E. Matrix methods in elastomechanics[J]. Journal of Applied Mechanics, 1964, 31(3): 574. |
17 | RUI X T, WANG G P, LU Y Q, et al. Transfer matrix method for linear multibody system[J]. Multibody System Dynamics, 2008, 19(3): 179-207. |
18 | RUI X T, WANG G P, ZHANG J S. Transfer matrix method for multibody systems: theory and applications[M]. New York: John Wiley & Sons, 2018. |
19 | RUI X T, HE B, LU Y Q, et al. Discrete time transfer matrix method for multibody system dynamics[J]. Multibody System Dynamics, 2005, 14(3): 317-344. |
20 | RUI X T, BESTLE D, ZHANG J S, et al. A new version of transfer matrix method for multibody systems[J]. Multibody System Dynamics, 2016, 38(2): 137-156. |
21 | 芮筱亭, 戎保. 多体系统传递矩阵法研究进展[J]. 力学进展, 2012, 42(1): 4-17. |
RUI X T, RONG B. Advances in transfer matrix method for multibody system dynamics[J]. Advances in Mechanics, 2012, 42(1): 4-17 (in Chinese). | |
22 | WANG X, XIA P Q. Novel modeling and vibration analysis method on a helicopter drive train system[J]. AIAA Journal, 2022, 60(7): 4288-4301. |
23 | SIVANERI N T, CHOPRA I. Dynamic stability of a rotor blade using finite element analysis[J]. AIAA Journal, 1982, 20(5): 716-723. |
/
〈 |
|
〉 |