流体力学与飞行力学

GPU加速高阶谱差分方法在风扇噪声中的应用

  • 张东飞 ,
  • 高军辉
展开
  • 北京航空航天大学 能源与动力工程学院,北京 100191
.E-mail: gaojhui@buaa.edu.cn

收稿日期: 2023-04-28

  修回日期: 2023-05-17

  录用日期: 2023-06-16

  网络出版日期: 2023-06-27

基金资助

国家重点研发计划(2018YFA0703300);国家科技重大专项(J2019-II-0006-0026);国家自然科学基金(NSFC-51876003)

Application of GPU⁃accelerated high⁃order spectral difference method in fan noise

  • Dongfei ZHANG ,
  • Junhui GAO
Expand
  • School of Energy and Power Engineering,Beihang University,Beijing 100191,China

Received date: 2023-04-28

  Revised date: 2023-05-17

  Accepted date: 2023-06-16

  Online published: 2023-06-27

Supported by

National Key Research and Development Project(2018YFA0703300);National Science and Technology Major Project(J2019-II-0006-0026);National Natural Science Foundation of China(NSFC-51876003)

摘要

风扇是大涵道比涡扇发动机的主要噪声源之一,准确预测风扇噪声对声学设计、噪声机制分析具有重要意义。高精度计算气动声学方法是风扇噪声计算的一个重要途径,但是由于巨大的计算资源需求,限制了其在风扇噪声计算上的应用。将图形处理器(GPU)加速计算方法应用到高阶谱差分计算气动声学求解器中,对不同的GPU和中央处理器(CPU)异构计算模式进行了测试和优化,并分析了影响异构计算效率的瓶颈。在A100 GPU卡上测试的结果表明,相比于28核的CPU计算节点,采用静止网格、运动网格的GPU计算加速比分别为20.4、14.0。将GPU加速的计算气动声学求解器应用到低速风扇噪声数值模拟中,准确预测了管道内前两阶叶片通过频率(BPF)的主导模态,与实验测量结果相比,模态声功率级误差在5 dB以内。

本文引用格式

张东飞 , 高军辉 . GPU加速高阶谱差分方法在风扇噪声中的应用[J]. 航空学报, 2024 , 45(8) : 128941 -128941 . DOI: 10.7527/S1000-6893.2023.28941

Abstract

The fan is one of the main noise sources of the large bypass turbofan engine, and accurate prediction of fan noise is of great significance for acoustic design and noise mechanism analysis. High-precision computational aeroacoustic methods are an important approach to fan noise calculation, where, however, their application is limited due to the enormous computational resource requirements. This paper applies GPU-accelerated computing methods to a high-order spectral difference computational aeroacoustic solver, tests and optimizes different GPU/CPU heterogeneous computing modes, and analyzes the bottlenecks affecting heterogeneous computing efficiency. Test results on a single A100 GPU card show that the GPU computational speed-up ratios are 20.4 and 14.0 for stationary and rotating grids, respectively, compared with a dual-CPU 28-core computing node. Finally, this paper applies the GPU-accelerated computational aeroacoustic solver to the numerical simulation of low-speed fan noise, accurately predicting the dominant modes of the first two orders of Blade Passage Frequency (BPF) in the duct. Compared with the experimental results, the error in the modal sound power level is within 5 dB.

参考文献

1 ENVIA E. Fan noise reduction: an overview[J]. International Journal of Aeroacoustics20021(1): 43-64.
2 ENVIA E, WILSON A G, HUFF D L. Fan noise: A challenge to CAA[J]. International Journal of Computational Fluid Dynamics200418(6): 471-480.
3 TAM C K W. Computational aeroacoustics: an overview of computational challenges and applications[J]. International Journal of Computational Fluid Dynamics200418(6): 547-567.
4 NVIDA CUDA c programming guide[EB/OL]. [2020-10-31]. .
5 NVIDIA A 100 tensor core GPU[EB/OL]. [2020-10-31]. .
6 Intel Xeon Platinum 8376HL Processor[EB/OL]. [2020-10-31]. .
7 NVIDIA H 100 tensor core GPU[EB/OL]. [2022-10-31]. .
8 鞠鹏飞, 宁方飞. GPU平台上的叶轮机械CFD加速计算[J]. 航空动力学报201429(5): 1154-1162.
  JU P F, NING F F. Accelerated CFD computing of turbomachinery on GPU platform[J]. Journal of Aerospace Power201429(5): 1154-1162 (in Chinese).
9 张翔, 黄秀全. 基于图形处理器加速的叶轮机流场数值模拟研究[J]. 科学技术与工程201313(11): 3195-3199.
  ZHANG X, HUANG X Q. An accelerated numerical simulation research on flows in turbomachines based on graphics hardware[J]. Science Technology and Engineering201313(11): 3195-3199 (in Chinese).
10 曹文斌, 李桦, 谢文佳, 等. 应用多GPU的可压缩湍流并行计算[J]. 国防科技大学学报201537(3): 78-83.
  CAO W B, LI H, XIE W J, et al. Parallel computation of compressible turbulence using multi-GPU clusters[J]. Journal of National University of Defense Technology201537(3): 78-83 (in Chinese).
11 吴建松, 许声弟, 胡啸峰. 基于光滑粒子流体动力学方法与GPU并行计算的阶梯流数值模拟[J]. 科学技术与工程201616(23): 59-63.
  WU J S, XU S D, HU X F. Numerical modeling of flooding over underground staircases using GPU-based SPH method[J]. Science Technology and Engineering201616(23): 59-63 (in Chinese).
12 ZIMMERMAN B J, WANG Z J, VISBAL M R. High-order spectral difference: Verification and acceleration using GPU computing[C]∥ Proceedings of the 21st AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2013.
13 MIAO S M, ZHANG X, PARCHMENT O G, et al. A fast GPU based bidiagonal solver for computational aeroacoustics[J]. Computer Methods in Applied Mechanics and Engineering2015286: 22-39.
14 VERMEIRE B C, WITHERDEN F D, VINCENT P E. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools[J]. Journal of Computational Physics2017334: 497-521.
15 VANDENHOECK R, LANI A. Implicit high-order flux reconstruction solver for high-speed compressible flows[J]. Computer Physics Communications2019242: 1-24.
16 LIU Y, VINOKUR M, WANG Z J. Spectral difference method for unstructured grids I: Basic formulation[J]. Journal of Computational Physics2006216(2): 780-801.
17 WANG Z J, LIU Y, MAY G, et al. Spectral difference method for unstructured grids II: Extension to the Euler equations[J]. Journal of Scientific Computing200732(1): 45-71.
18 SUN Y Z, WANG Z J, LIU Y. High-order multidomain spectral difference method for the navier-stokes equations[C]∥ Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: AIAA2006-301.
19 GAO J H. A sliding-mesh interface method for three dimensional high order spectral difference solver[J]. Journal of Computational Physics2022454: 110988.
20 STANESCU D, HABASHI W G. 2N-storage low dissipation and dispersion runge-kutta schemes for computational acoustics[J]. Journal of Computational Physics1998143(2): 674-681.
21 HERGT A, MEYER R, LIESNER K, et al. A new approach for compressor endwall contouring[C]∥Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011: 177-186.
22 DUAN Z W, JIA F L, WANG Z J. Sliding mesh and arbitrary periodic interface approaches for the high order FR/CPR method[C]∥ Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
23 SUTLIFF D L. A 20 year retrospective of the advanced noise control fan–contributions to turbofan noise research[C]∥ Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019.
24 HU F. On the construction of PML absorbing boundary condition for the non-linear Euler equations[C]∥Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
25 BU H X, HUANG X, ZHANG X. A compressive-sensing-based method for radial mode analysis of aeroengine fan noise[J]. Journal of Sound and Vibration2020464: 114930.
26 MANN A, PEROT F, KIM M S, et al. Advanced noise control fan direct aeroacoustics predictions using a lattice-boltzmann method[C]∥ Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). Reston: AIAA, 2012.
27 MCALLISTER J, LOEW R, LAUER J, et al. The advanced noise control fan baseline measurements[C]∥ Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
28 DAROUKH M, LE GARREC T, POLACSEK C. Low-speed turbofan aerodynamic and acoustic prediction with an isothermal lattice boltzmann method[J]. AIAA Journal202260(2): 1152-1170.
文章导航

/