论文

反跨介质导弹攻击拦截策略

  • 刘冠杉 ,
  • 刘杰 ,
  • 王新远
展开
  • 中国船舶集团有限公司系统工程研究院,北京 100094
.E-mail: liujie_cssc01@163.com

收稿日期: 2023-04-17

  修回日期: 2023-05-24

  录用日期: 2023-06-25

  网络出版日期: 2023-06-27

基金资助

国家级项目

Interception strategy for anti-cross-medium missile attacks

  • Guanshan LIU ,
  • Jie LIU ,
  • Xinyuan WANG
Expand
  • CSSC System Engineering Research Institute,Beijing 100094,China

Received date: 2023-04-17

  Revised date: 2023-05-24

  Accepted date: 2023-06-25

  Online published: 2023-06-27

Supported by

National Level Project

摘要

由于跨介质导弹具备速度快、射程远和突袭性强的特点,导致对其进行空中近程拦截失效,且跨介质末弹道通过硬杀伤手段进行拦截的反应时间短和防御难度大。本文主要针对反跨介质导弹拦截的难点问题,总结分析了跨介质导弹跨域后的弹道攻击特征,提出了基于提前角导引、机动占位和零控最优3种拦截弹道策略,来满足不同态势条件下及早拦截、快速拦截和精确拦截的防御需求,并通过仿真实验对比分析了不同弹道模型的拦截效能,仿真结果表明:零控最优拦截策略的拦截概率在各种态势下均比较高和稳定,拦截效能均在90%以上;机动占位拦截策略的拦截概率中等,但受态势影响较小,拦截效能在50%~80%的范围;提前角导引拦截策略方法在近距离中等舷角态势下拦截效果较好,但态势对拦截概率影响显著,拦截效能均在70%以上。对深入研究快速高效防御跨介质导弹和反跨介质导弹拦截弹道具有一定的参考价值。

本文引用格式

刘冠杉 , 刘杰 , 王新远 . 反跨介质导弹攻击拦截策略[J]. 航空学报, 2023 , 44(21) : 528873 -528873 . DOI: 10.7527/S1000-6893.2023.28873

Abstract

Cross-medium missiles possess the characteristics of fast speed, long range, and strong surprise attack across airspace and water bodies, leading to ineffective close-range aerial interception against them, short interception reaction time and high defense difficulty through hard killing methods at the end of the cross-medium trajectory. This article focuses on the key issues of anti-cross-medium missile interception. Firstly, the ballistic attack characteristics of cross medium missiles after crossing domains are summarized and analyzed. Then, three interception ballistic strategies, namely advance angle guidance, maneuvering occupancy, and zero control optimization, are proposed to meet the defense requirements of early interception, rapid interception, and precise interception under different situational conditions. The interception efficiency of different ballistic models is compared and analyzed through simulation experiments, showing that the interception probability of the zero control optimal interception strategy is relatively high and stable in various situations with interception efficiency higher than 90%; the interception probability of the maneuver occupying interception strategy is moderate but less affected by the situation, and the interception efficiency ranges from 50% to 80%; the advanced angle guidance interception strategy method achieves interception efficiency above 70% in all situations, especially in close range and medium angle situations, whereas the situation has a significant impact on interception probability. It has been shown that this paper provides a solid reference for in-depth research on the design of interception trajectories for the rapid and efficient defense of cross medium missiles and anti-cross-medium missiles.

参考文献

1 汲万峰, 戚学文, 李冬. 可再入跨介质无人飞行器作战应用及效能评估[J]. 电光与控制202229(9): 38-42.
  JI W F, QI X W, LI D. Operational application and effectiveness evaluation of reentry cross-medium unmanned aerial vehicles[J]. Electronics Optics & Control202229(9): 38-42 (in Chinese).
2 齐铎, 冯金富, 李永利. 具有水空介质跨越能力的反舰武器[J]. 飞航导弹2014(11):78-80, 96.
  QI D, FENG J F, LI Y L. Numerical simulation of the characteristics of water surface skipping motion of sea-skimming projectile [J]. Aerodynamic Missile Journal2014(11):78-80,96 (in Chinese).
3 梁良, 贾跃, 任磊. 国外舰载助飞鱼雷发展综述[J]. 鱼雷技术201422(2): 157-160.
  LIANG L, JIA Y, REN L. Review of foreign shipborne assisted torpedoes[J]. Torpedo Technology201422(2): 157-160 (in Chinese).
4 于雪泳, 刘银竹. 潜艇对来袭鱼雷硬杀伤手段分析[J]. 兵器装备工程学报201940(): 1-3.
  YU X Y, LIU Y Z. Analysis on torpedo countermeasures of submarine’s hard kill method[J]. Journal of Ordnance Equipment Engineering201940(S1): 1-3 (in Chinese).
5 赵莲芳. 水面舰艇和潜艇反鱼雷防御系统和技术[J]. 情报指挥控制系统与仿真技术200123(2): 1-14.
  ZHAO L F. Anti-torpedo defense system and technology for surface ships and submarines[J]. Intelligence Command Control and Simulation Technigues200123(2): 1-14 (in Chinese).
6 易红, 郝保安, 王宏伟. 声自导鱼雷对抗气幕弹技术方法探讨[J]. 舰船科学技术200628(6): 82-86.
  YI H, HAO B A, WANG H W. Exploration on countermeasure of acoustic homing torpedo against bubble shell[J]. Ship Science and Technology200628(6): 82-86 (in Chinese).
7 李本江, 李贵彬, 魏敬广. 潜艇使用噪声干扰器规避鱼雷攻击最优航向仿真研究[J]. 鱼雷技术200917(6): 75-78.
  LI B J, LI G B, WEI J G. Simulation of submarine’s optimal course after using noise jammer to elude acoustic homing torpedo[J]. Torpedo Technology200917(6): 75-78 (in Chinese).
8 于昌荣, 苗艳. 潜艇使用自航式声诱饵防御声自导鱼雷模型研究[J]. 指挥控制与仿真200931(3): 61-64.
  YU C R, MIAO Y. Research on model of defending acoustic homing torpedo using mobile acoustic decoy by submarine[J]. Command Control & Simulation200931(3): 61-64 (in Chinese).
9 任磊, 贾跃, 寇祝. 机动受限舰艇使用火箭诱杀弹对抗声自导鱼雷仿真研究[J]. 指挥控制与仿真201234(3): 102-106.
  REN L, JIA Y, KOU Z. Research on trapping and killing rocket simulation in ship limited mobility countering acoustic homing torpedo[J]. Command Control & Simulation201234(3): 102-106 (in Chinese).
10 钱东, 张起. 欧洲反鱼雷鱼雷研发展望[J]. 鱼雷技术200614(5): 1-5, 11.
  QIAN D, ZHANG Q. Development of anti-torpedo torpedo in Europe[J]. Torpedo Technology200614(5): 1-5, 11 (in Chinese).
11 李本昌, 唐农军, 胡定安. 重型鱼雷的机动搜索及机动搜索弹道架构[J]. 指挥控制与仿真201032(3): 1-3.
  LI B C, TANG N J, HU D A. Heavy torpedo’s maneuver searching and its trajectory framework[J]. Command Control & Simulation201032(3): 1-3 (in Chinese).
12 毛俊超, 邱华, 孙华春. 声自导鱼雷追踪导引弹道分析[J]. 舰船科学技术201133(4): 123-125.
  MAO J C, QIU H, SUN H C. The pursuit-guidance trajectory analysis for acoustic homing torpedo[J]. Ship Science and Technology201133(4): 123-125 (in Chinese).
13 杨益新, 韩一娜, 赵瑞琴, 等. 海洋声学目标探测技术研究现状和发展趋势[J]. 水下无人系统学报201826(5): 369-386, 367.
  YANG Y X, HAN Y N, ZHAO R Q, et al. Ocean acoustic target detection technologies: A review[J]. Journal of Unmanned Undersea Systems201826(5): 369-386, 367 (in Chinese).
14 薛晓中, 邵大燮, 金友兵. 火箭助飞鱼雷的弹道分析[J]. 兵工学报200122(4): 452-455.
  XUE X Z, SHAO D X, JIN Y B. Ballistic characteristics of rocket assisted torpedo[J]. Acta Armamentarii200122(4): 452-455 (in Chinese).
15 张永, 逄洪照, 黄波, 等. 应用于鱼雷远程报警的鱼雷出管信号检测[J]. 火力与指挥控制201035(3): 127-129, 134.
  ZHANG Y, PANG H Z, HUANG B, et al. Analysis of the launching torpedo noise affecting the torpedo hit probability[J]. Fire Control & Command Control201035(3): 127-129, 134 (in Chinese).
16 于昌荣. 一种直航+迎面的反鱼雷鱼雷拦截弹道设计方法[J]. 舰船电子工程201636(4): 26-28, 158.
  YU C R. Design of intercept trajectory of anti-torpedo torpedo based on direct and converse[J]. Ship Electronic Engineering201636(4): 26-28, 158 (in Chinese).
17 李华军. 潜艇纯方位解算目标运动要素中机动原则的确定[J]. 火力与指挥控制198914(3): 52-54.
  LI H J. Determination of maneuver principle in submarine bearings-only solution of target motion elements[J]. Fire Control & Command Control198914(3): 52-54 (in Chinese).
18 李金龙, 尹韶平, 董春鹏. 基于修正极坐标滤波的水下目标运动要素解算方法[J]. 鱼雷技术201018(2): 88-90.
  LI J L, YIN S P, DONG C P. Motion elements solution method of underwater target based on modified polar coordinates Kalman filter[J]. Torpedo Technology201018(2): 88-90 (in Chinese).
19 刘卫东, 高立娥, 朱健, 等. 基于零控曲面的拦截导引方法[J]. 系统仿真学报200517(8): 1803-1804, 1819.
  LIU W D, GAO L E, ZHU J, et al. Interception guidance approach based on zero-effect state[J]. Acta Simulata Systematica Sinica200517(8): 1803-1804, 1819 (in Chinese).
20 孔锋. 反鱼雷鱼雷弹道的多媒体仿真[D]. 西安: 西北工业大学, 2003.
  KONG F. Multimedia simulation of torpedo trajectory of anti-torpedo[D]. Xi’an: Northwestern Polytechnical University, 2003 (in Chinese).
21 彭会斌, 刘希. 基于效能分析的反鱼雷鱼雷拦截方式优选技术[J]. 指挥控制与仿真201840(2): 90-93, 98.
  PENG H B, LIU X. Optimization technology on intercept mode of ATT based on efficiency[J]. Command Control & Simulation201840(2): 90-93, 98 (in Chinese).
文章导航

/